FM 5011 Fall 2011, Midterm \#1
Handout date: Thursday 20 October 2011
Time for exam: ONE HOUR

PRINT NAME:

Remember to read to the bottom and to SIGN YOUR NAME BELOW!
Closed book, closed notes, no calculators/PDAs; no reference materials of any kind. Show work; a correct answer, by itself, may be insufficient for credit.

I understand the above, and I understand that cheating has severe consequences, from a failing grade to expulsion.

REMEMBER TO SIGN YOUR NAME:
I. Definitions: Complete the following sentences.
a. [Topic $1200(25), 3 \mathrm{pts}$.] Let $X_{n}$ be a sequence of PCRVs. We say $X_{n} \rightarrow \sigma Z+\mu$ in distribution if ...
b. [Topic $0100(21), 3$ pts.] Let $X$ and $Y$ be non-determinstic PCRVs. The covariance of $X$ and $Y$ is defined by $\operatorname{Cov}[X, Y]=\cdots$.
c. [Topic $2330(24), 3$ pts.] Two measures $\mu$ and $\nu$ on a Borel space $(M, \mathcal{B})$ are equivalent, written $\mu \approx \nu$, if $\ldots$
d. [Topic $1700(12), 3$ pts.] Let $\mathcal{B}$ and $\mathcal{C}$ be $\sigma$-algebras on sets $M$ and $N$, respectively. The product $\sigma$-algebra on $M \times N$ is defined by $\mathcal{B} \times \mathcal{C}=\cdots$
e. [Topic $2300(6), 3 \mathrm{pts}$.] Let $(M, \mathcal{B}, \mu)$ be a measure space. A function $s: M \rightarrow \mathbb{R}$ is simple if ...
II. True or False. (No partial credit.)
a. [Topic $2300(9), 3$ pts.] Let $(M, \mathcal{B}, \mu)$ be a measure space and let $f: M \rightarrow[0, \infty]$ be a measurable function. Then $\int_{M} f d \mu$ exists (although it may be equal to $\infty$ ).
b. [Topic $2330(24), 3$ pts.] Let $(M, \mathcal{B}, \mu)$ be a measure space and let $f: M \rightarrow[0, \infty]$ be a measurable function. Then $\mu$ and $f \mu$ are equivalent measures.
c. [Topic 1100(12), 3 pts.] Let $X$ and $Y$ be independent, identically distributed PCRVs. If $f(t)$ is the Fourier transform of the distribution of $X$, then the Fourier transform of the distribution of $5(X+Y)$ is $[f(5 t)]^{2}$.
d. [Topic $0200(30), 3$ pts.] Let $(M, \mathcal{B}),(N, \mathcal{C})$ and $(P, \mathcal{D})$ be Borel spaces. If $f: M \rightarrow N$ and $g: N \rightarrow P$ are both Borel maps, then $g \circ f: M \rightarrow P$ is also Borel.
e. [Topic $1100(18), 3$ pts.] If $X_{1}, X_{2}, X_{3}, \ldots$ is a sequence of PCRVs, and if the Fourier transforms of their distributions converge to $e^{-t^{2} / 2}$, then $X_{1}, X_{2}, X_{3}, \ldots \rightarrow Z$ in distribution.

## THE BOTTOM OF THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE BELOW THE LINE

I.
II.

III(1).
III(2ab).
III(3).
III(4,5).
III(6).
III(7).
III(8).
III. Computations. Some of your answers may involve $\Phi$, the cumulative distribution function of the standard normal distribution. (Unless otherwise specified, answers must be exactly correct, but can be left in any form easily calculated on a standard calculator.)

1. [Topic $1400(2-8), 10$ pts.] Compute $\int_{0}^{\infty}\left(e^{3 x}-2 x^{6}\right) e^{-x^{2} / 2} d x$.
2. [Topic $1500(29), 10 \mathrm{pts}$.] Let $\mathcal{S}$ be the $\sigma$-algebra on $[0,10)$ generated by the sets $[0,1)$,
$[0,2),[0,3), \ldots,[0,9)$. How many sets are there in $\mathcal{S}$ ?
3. [Topic $1200(13-23), 10$ pts.] Let $X_{1}, X_{2}, \ldots$ be an independent sequence of binary PCRVs such that:

$$
\operatorname{Pr}\left[X_{j}=-3\right]=0.4 \quad \text { and } \quad \operatorname{Pr}\left[X_{j}=2\right]=0.6
$$

Let $Y_{n}:=\left(X_{1}+\cdots+X_{n}\right) / \sqrt{n}$. Let $f_{n}(t)$ be the Fourier transform of the distribution of $Y_{n}$. Compute $\lim _{n \rightarrow \infty}\left(f_{n}(3)\right)$.
4. [Topic $2400(28), 10$ pts.] Let $\lambda$ denote Lebesgue measure on $\mathbb{R}$. Give an example of a sequence of smooth functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ such that
$(\bullet)$ for all $x \in \mathbb{R}, \lim _{n \rightarrow \infty} f_{n}(x)=0$; and
(•) for all integers $n \geq 1, \int_{\mathbb{R}} f_{n}(x) d \lambda(x)=1$.
5. [Topic $1700(35), 5$ pts.] Define the PCRV $X:[0,1] \rightarrow \mathbb{R}$ by

$$
X(\omega)= \begin{cases}6, & \text { if } 0 \leq \omega \leq 0.2 \\ 7, & \text { if } 0.2<\omega<0.9 \\ 8, & \text { if } 0.9 \leq \omega \leq 1\end{cases}
$$

Let $\lambda_{1}$ be the restriction of Lebesgue measure to $[0,1]$. Write the distribution $X_{*}\left(\lambda_{1}\right)$ of $X$ as a linear combination of point masses.
6. [Topic $1700(19), 10$ pts.] Let $S:=[1,1.1] \cup[2,2.01] \cup[3,3.001] \cup[4,4.0001] \cup \cdots$. Let $T:=[1,1.1] \cup[2,2.02] \cup[3,3.003] \cup[4,4.0004] \cup \cdots$. Let $\lambda^{2}$ be Lebesgue measure on $\mathbb{R}^{2}$. Compute $\lambda^{2}(S \times T)$. (Express your answer as a quotient of two integers.)
7. [Topic $0200(25-30), 5$ pts.] Let $X$ be a sum of $1,000,000$ independent binary PCRVs, all with the same mean, $\mu$, and all with the same standard deviation, $\sigma$. Assume that $\mathrm{SD}[X]=1,000$ and that $\mathrm{E}[X]=1,000$. Find $\mu$ and $\sigma$.
8. [Topic $1200(2), 10$ pts.] For each integer $n \geq 1$, let $X_{n}$ be a sum of $n$ independent binary PCRVs, all with the same distribution. Assume, for all integers $n \geq 1$, that the uptick and downtick probabilities (of the summands) are between 0.1 and 0.9. Assume, for all integers $n \geq 1$, that $X_{n}$ is has mean 0 and standard deviation 10. Using the Triangular Central Limit Theorem, compute $\lim _{n \rightarrow \infty} \mathrm{E}\left[\left(e^{X_{n}}-e^{30}\right)_{+}\right]$.

