FM 5011 Fall 2011, Midterm \#2
Handout date: Thursday 17 November 2011
Time for exam: ONE HOUR

PRINT NAME:

Remember to read to the bottom and to SIGN YOUR NAME BELOW!
Closed book, closed notes, no calculators/PDAs; no reference materials of any kind. Show work; a correct answer, by itself, may be insufficient for credit.

I understand the above, and I understand that cheating has severe consequences, from a failing grade to expulsion.

REMEMBER TO SIGN YOUR NAME:
I. Definitions: Complete the following sentences.
a. [Topic $2900(9), 3$ pts.] If X is a random variable on a probability space $(\Omega, \mathcal{B}, \mu)$, then the distribution of X is given by $\delta_{X}:=\cdots$
b. [Topic $2900(4), 3$ pts.] A (real-valued) random variable X is L^{2} if ...
c. [Topic $2700(13), 3$ pts.] The CDF of a measure μ on \mathbb{R} is defined by $\operatorname{CDF}_{\mu}(x)=\cdots$
d. [Topic $2700(35), 3$ pts.] Let μ_{1}, μ_{2}, \ldots be a sequence of probability measures on \mathbb{R}. Let μ be another probability measure on \mathbb{R}. We say $\mu_{1}, \mu_{2}, \ldots \rightarrow \mu$ if \ldots
e. [Topic $2900(51), 3$ pts.] Let X_{1}, X_{2}, \ldots be a sequence of random variables on a probability space $(\Omega, \mathcal{B}, \mu)$. Let X be another random variable on $(\Omega, \mathcal{B}, \mu)$. We say $X_{1}, X_{2} \ldots \rightarrow X$ in probability if ...
II. True or False. (No partial credit.)
a. [Topic $2450(8), 3$ pts.] Let λ be Lebesgue measure on \mathbb{R}. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be measurable. Let $A:=\int_{\mathbb{R}}\left[\int_{\mathbb{R}}[f(x, y)](d \lambda)(x)\right](d \lambda)(y)$ and $B:=\int_{\mathbb{R}}\left[\int_{\mathbb{R}}[f(x, y)](d \lambda)(y)\right](d \lambda)(x)$. Assume both A and B exist and are finite. Then $A=B$.
b. [Topic $2500(5), 3$ pts.] The Borel spaces $[0,1]$ and \mathbb{R}^{3}, with their standard σ-algebras, are Borel isomorphic.
c. [Topic 2700(13), 3 pts.] Let μ and ν be two probability measures on \mathbb{R}. Assume that $\mathrm{CDF}_{\mu}=\mathrm{CDF}_{\nu}$. Then $\mu=\nu$.
d. [Topic $2900(14), 3 \mathrm{pts}$.] Suppose that A, B, C, D are random variables, all with the same distribution. Then $\operatorname{Var}[A]=\operatorname{Var}[B]=\operatorname{Var}[C]=\operatorname{Var}[D]$.
e. [Topic $2900(53), 3$ pts.] Let X_{1}, X_{2}, \ldots be a sequence of random variables on a probability space $(\Omega, \mathcal{B}, \mu)$. Let X be another random variable on a $(\Omega, \mathcal{B}, \mu)$. If $X_{1}, X_{2}, \ldots \rightarrow X$ in probability, then $X_{1}, X_{2}, \ldots \rightarrow X$ almost surely.

THE BOTTOM OF THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE BELOW THE LINE

I.
II.

III(1).
$\operatorname{III}(2,3)$.
III(4).
III(5).

III(6).
III. Computations. Some of your answers may involve Φ, the cumulative distribution function of the standard normal distribution. (Unless otherwise specified, answers must be exactly correct, but can be left in any form easily calculated on a standard calculator.)

1. [Topic $2800(14), 15$ pts.] Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
g(x)= \begin{cases}x, & \text { if } x \leq 0 \\ 1-x^{2}, & \text { if } x>0\end{cases}
$$

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=e^{x}$. Compute $\int_{-1}^{1} f d g$.
(Hint: An antiderivative of $x e^{x}$ is $x e^{x}-e^{x}$.)
2. [Topic $2900(36), 10$ pts.] Let Y and Z be independent standard normal random variables. Compute the Fourier transform of the distribution of $Y+Z$.
(Hint: $\mathcal{F} \delta_{Y}=\mathcal{F} \delta_{Z}=e^{-t^{2} / 2}$.)
3. [Topic 2900(8), 10 pts.] Let Y and Z be two independent standard normal random variables. Find constants $a \geq 0, b \in \mathbb{R}$ and $c \geq 0$ such that
(•) $\operatorname{Var}[a Y+b Z]=29$;
(•) $\operatorname{Cov}[a Y+b Z, c Z]=-6$; and
(•) $\operatorname{Var}[c Z]=9$;
4. [Topic 2900(47), 15 pts.] Let C_{1}, C_{2}, \ldots be an iid sequence of binary random variables such that, for all integers $j \geq 1$, we have $\operatorname{Pr}\left[C_{j}=1\right]=0.5$ and $\operatorname{Pr}\left[C_{j}=-1\right]=0.5$. For all integers $n \geq 1$, let $X_{n}=\left(C_{1}+\cdots+C_{n}\right) / \sqrt{n}$. Compute $\lim _{n \rightarrow \infty} E\left[e^{4 X_{n}}\right]$.
5. [Topic 2900(13), 10 pts.] Let Z be a standard normal random variable. Let $\sigma>0$ and let $\mu \in \mathbb{R}$. Compute $\mathrm{E}\left[e^{\sigma Z+\mu}\right]$.
6. [Topic $2900(45), 10$ pts.] Let Z be a standard normal random variable. Let G be the grade of Z and let H be the grade of Z^{3}. Let $\mu:=\delta_{G, H}$ be the copula of Z and Z^{3}. Let $I:=[0.2,0.3]$ and $J:=[0.4,0.5]$. Compute $\mu(I \times J)$.
Hint: $\operatorname{CDF}_{\delta[Z]}(x)=\Phi(x)$ and

$$
\operatorname{CDF}_{\delta\left[Z^{3}\right]}(x)=\operatorname{Pr}\left[Z^{3} \leq x\right]=\operatorname{Pr}[Z \leq \sqrt[3]{x}]=\operatorname{CDF}_{\delta[Z]}(\sqrt[3]{x})=\Phi(\sqrt[3]{x})
$$

