Financial Mathematics

Basics of measures

1600-1. Let $Y:=\{H,T\}^2=\{H,T\}\times\{H,T\}$ $=\{(H,H),(H,T),(T,H),(T,T)\}.$ Let $\mathcal B$ be the discrete σ -algebra on Y. Let μ be the measure on $(Y_0,\mathcal B)$ s.t.

$$\mu(\{(H, H)\}) = 0.04$$

$$\mu(\{(H, T)\}) = \mu(\{(T, H)\}) = 0.16$$

$$\mu(\{(T, T)\}) = 0.64.$$

Compute $\mu(\{(H,H),(T,T)\})$.

Note: The measure space (Y, \mathcal{B}, μ) models two flips of a biased coin that comes up heads 20% of the time. You are being asked to compute the probability that the two flips come up the same.