Financial Mathematics

Basics of measures

1600-1. Let $Y:=\{H, T\}^{2}=\{H, T\} \times\{H, T\}$

$$
=\{(H, H),(H, T),(T, H),(T, T)\}
$$

Let \mathcal{B} be the discrete σ-algebra on Y.
Let μ be the measure on $\left(Y_{0}, \mathcal{B}\right)$ s.t.

$$
\begin{gathered}
\mu(\{(H, H)\})=0.04 \\
\mu(\{(H, T)\})=\mu(\{(T, H)\})=0.16 \\
\mu(\{(T, T)\})=0.64
\end{gathered}
$$

Compute $\mu(\{(H, H),(T, T)\})$.
Note: The measure space (Y, \mathcal{B}, μ) models two flips of a biased coin that comes up heads 20% of the time. You are being asked to compute the probability that the two flips come up the same.

