Financial Mathematics

Constructions of measure spaces

1700-1.
Find the Lebesgue measure (in \mathbb{R}^{2}) of $([1,3] \times[5,9]) \cup([3,6] \times[7,17])$.

1700-2.
Find the Lebesgue measure (in \mathbb{R}^{2}) of

$$
\bigcup_{n=1}\left[n, n+7^{-n}\right] \times\left[n, n+5^{-n}\right] .
$$

1700-3. Define $f:[2,8] \rightarrow \mathbb{R}$ by

$$
f(x)=\left\{\begin{array}{r}
-1, \text { if } 2 \leq x \leq 4 \\
0, \text { if } 4<x<6 \\
8, \text { if } 6 \leq x \leq 8
\end{array}\right.
$$

Let λ_{1} be the restriction, to $[2,8]$, of Lebesgue measure on \mathbb{R}.
Write $f_{*}\left(\lambda_{1} / 6\right)$ as a linear combination of delta masses.

1700-4.
Let $X:=\{H, T\}$, with the discrete σ-algebra.
Let $Y:=X \times X \times X \times \cdots$.
with the product σ-algebra,
Let μ be the measure on X defined by $\mu(\{H\})=0.7$ and $\mu(\{T\})=0.3$.

Let $\nu:=\mu \times \mu \times \mu \times \cdots$, a msr def'd on Y.
\forall integers $j \geq 1$, let $p_{j}: Y \rightarrow X$ be the j th coordinate projection, defined by $p_{j}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=x_{j}$.
(cont'd on next slide).

1700-4 (cont'd).

Let S be the set of all $y \in Y$ such that

$$
p_{5}(y)=p_{10}(y)=p_{15}(y)
$$

Let S_{0} be the set of all $y \in Y$ such that

$$
p_{5}(y)=p_{10}(y)=p_{15}(y)=p_{20}(y)=\cdots
$$

Compute $\nu(S)$ and $\nu\left(S_{0}\right)$.
Note: The measure space (Y, \mathcal{B}, μ) models an infinite sequence of flips of a biased coin that comes up heads 70% of the time. You are being asked to compute the probability that flips 5, 10 and 15 come up the same, as well as the probability that flips $5,10,15,20, \ldots$ come up the same.

