Financial Mathematics

Basics of integration

Let λ denote Lebesgue measure on \mathbb{R} .

2330-1. Let
$$I := [1, 5]$$
.

Compute
$$\int_I (3s^2 + 7s - 3) d\lambda(s)$$
, if it exists.

2330-2. Let $\mathbb{R}_+ := (0, \infty)$.

Let $f: \mathbb{R}_+ \to \mathbb{R}_+$ be defined by $f(x) = x^7$.

Let $a, b \in \mathbb{R}_+$ and assume that a < b.

Let I := [a, b] be the closed interval from a to b.

Let λ_{+} be Lebesgue measure on \mathbb{R}_{+} .

- a. Compute $(f\lambda_+)([a,b])$.
- b. Compute $(f_*\lambda_+)([a,b])$.
- c. Define $g: \mathbb{R}_+ \to \mathbb{R}_+$ by

$$g(y) = \frac{1}{f'(f^{-1}(y))} = \frac{1}{7(\sqrt[7]{y})^6}.$$

Compute $(g\lambda_+)([a,b])$.