Financial Mathematics Topics in integration **2360-1**. Let $\Omega := \{A, B, C, D, E\}$. Define prob. measures $\mu, \nu : 2^{\Omega} \rightarrow [0, 1]$ by $\mu(\{A\}) = 0.2, \quad \nu(\{A\}) = 0.2,$ $\mu(\{B\}) = 0.0, \quad \nu(\{B\}) = 0.0,$ $\mu(\{C\}) = 0.3, \quad \nu(\{C\}) = 0.1,$ $\mu(\{D\}) = 0.3, \quad \nu(\{D\}) = 0.3,$ $\mu(\{E\}) = 0.2, \quad \nu(\{E\}) = 0.4,$ Determine whether $\mu << \nu$ and whether $\nu << \mu$. If $\mu << \nu$, then find $\frac{d\mu}{d\nu}$, *i.e.*, find $f: \Omega \to \mathbb{R}$ s.t. $\mu = f\nu$. If $\nu << \mu$, then find $\frac{d\nu}{d\mu}$, *i.e.*, find $g: \Omega \to \mathbb{R}$ s.t. $\nu = g\mu$.²

2360-2. Define a PCRV X by $X(\omega) = \begin{cases}
3, \text{ if } 0.00 \le \omega < 0.25 \\
-4, \text{ if } 0.25 \le \omega \le 0.50 \\
1, \text{ if } 0.50 < \omega \le 0.75 \\
7, \text{ if } 0.75 < \omega \le 1.00
\end{cases}$

Let P denote Lebesgue msr on $\Omega := [0, 1]$. Let \mathcal{A} denote the set of all changes of measure on (Ω, P) , *i.e.*, the set of prob. msrs S on Ω s.t. S is equivalent to P. $\forall S \in \mathcal{A}, \ \mathsf{E}^{S}[X] := \int_{0}^{1} X \, dS.$ a. Find $E^P[X]$. **b.** Find $Q \in \mathcal{A}$ s.t. $E^Q[X] = 0$. c. Is there $R \in \mathcal{A}$ s.t. $E^R[X] = 6$? Explain. d. Find sup{ $E^{S}[X] | S \in \mathcal{A}$ }. 3

2360-3. Let $\mathbb{R}_+ := (0, \infty)$. Define $f : \mathbb{R}_+ \to \mathbb{R}_+$ by $f(x) = x^4$. Let λ_+ be Lebesgue measure on \mathbb{R}_+ .

a. Compute
$$\int_{\mathbb{R}_+} e^{-x^2} d(f\lambda_+)(x)$$
.

b. Compute $\int_{\mathbb{R}_+} e^{-x^{1/2}} d(f_*\lambda_+)(x)$.