Financial Mathematics

Topics in integration

2360-1. Let $\Omega:=\{A, B, C, D, E\}$.
Define prob. measures $\mu, \nu: 2^{\Omega} \rightarrow[0,1]$ by

$$
\begin{array}{ll}
\mu(\{A\})=0.2, & \nu(\{A\})=0.2 \\
\mu(\{B\})=0.0, & \nu(\{B\})=0.0 \\
\mu(\{C\})=0.3, & \nu(\{C\})=0.1 \\
\mu(\{D\})=0.3, & \nu(\{D\})=0.3 \\
\mu(\{E\})=0.2, & \nu(\{E\})=0.4,
\end{array}
$$

Determine whether $\mu \ll \nu$ and whether $\nu \ll \mu$.
If $\mu \ll \nu$, then find $\frac{d \mu}{d \nu}$, i.e., find $f: \Omega \rightarrow \mathbb{R}$
If $\nu \ll \mu$, then find $\frac{d \nu}{d \mu}$, i.e., find $g: \Omega \rightarrow \mathbb{R}$

$$
\text { st. } \nu=g \mu
$$

2360-2. Define a PCRV X by

$$
X(\omega)=\left\{\begin{array}{r}
3, \text { if } 0.00 \leq \omega<0.25 \\
-4, \text { if } 0.25 \leq \omega \leq 0.50 \\
1, \text { if } 0.50<\omega \leq 0.75 \\
7, \text { if } 0.75<\omega \leq 1.00
\end{array}\right.
$$

Let P denote Lebesgue msr on $\Omega:=[0,1]$.
Let \mathcal{A} denote the set of all changes of measure on (Ω, P), i.e., the set of prob. mss S on Ω st. S is equivalent to P. $\forall S \in \mathcal{A}, \mathbb{E}^{S}[X]:=\int_{0}^{1} X d S$. a. Find $E^{P}[X]$.
b. Find $Q \in \mathcal{A}$ s.t. $E^{Q}[X]=0$.
c. Is there $R \in \mathcal{A}$ st. $\mathrm{E}^{R}[X]=6$? Explain.
d. Find $\sup \left\{E^{S}[X] \mid S \in \mathcal{A}\right\}$.

2360-3. Let $\mathbb{R}_{+}:=(0, \infty)$.
Define $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$by $f(x)=x^{4}$. Let λ_{+}be Lebesgue measure on \mathbb{R}_{+}. a. Compute $\int_{\mathbb{R}_{+}} e^{-x^{2}} d\left(f \lambda_{+}\right)(x)$.
b. Compute $\int_{\mathbb{R}_{+}} e^{-x^{1 / 2}} d\left(f_{*} \lambda_{+}\right)(x)$.

