Financial Mathematics Measures on the reals 2700-1. Define $f, g : \mathbb{R} \to \mathbb{R}$ by $f(x) = e^x$, $g(x) = \begin{cases} x^5 + 1, \text{ if } x < 6\\ x^5 + 4, \text{ if } x > 6. \end{cases}$ Compute $\int_{5}^{9} f dg$. 2700-2. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = e^{-x}$. Let λ denote Lebesgue measure on \mathbb{R} . Find the CDF of $f\lambda$.

2700-3. Let I := [0, 1]. Let $f : I \to \mathbb{R}$ be defined by $f(x) = e^{-x}$. Let λ_1 denote Leb. measure on I. a. Find the CDF of $f_*(\lambda_1)$. b. Find a PDF for $f_*(\lambda_1)$.

 $\forall a \in \mathbb{R}, \ \delta_a :=$ the point mass on \mathbb{R} concentrated at $a : \to \infty$. 2700-4. Find the limit of the point masses $\delta_{4+(1/n)}$, **2700-5**. For all integers $n \ge 1$, let $\mu_n := \frac{\delta_{1/n} + \delta_{2/n} + \dots + \delta_{2n/n}}{r}$ 2nFind $\lim_{n \to \infty} \mu_n$. **2700-6**. Let λ be Lebesgue measure on \mathbb{R} . Let $\Omega := [0, 1]$. Let $\lambda_1 := 1^{\mathbb{R}}_{[0, 1]} \lambda$, let $\lambda_2 := \mathbf{1}_{[0,2]}^{\mathbb{R}} \lambda$ and let $\lambda_3 := \mathbf{1}_{[3,4]}^{\mathbb{R}} \lambda$. Find a random variable $X : \Omega \to \mathbb{R}$ s.t. $\delta_X = (1/2)\lambda_1 + (1/6)\lambda_2 + (1/6)\lambda_3.$

2700-7.
Let
$$f_n(x) := \begin{cases} 0, & \text{if } x \leq -1/n \\ (n+n^2x)/2, & \text{if } -1/n \leq x \leq 0 \\ (n-n^2x)/2, & \text{if } 0 \leq x \leq 1/n \\ 0, & \text{if } 1/n \leq x \end{cases}$$

Let $\lambda :=$ Lebesgue measure on \mathbb{R} . Find the limit of $f_n\lambda$, as $n \to \infty$.