Financial Mathematics

 Signed measures2800-1. Define $v: \mathbb{R} \rightarrow \mathbb{R}$ by $v(x)=x^{2}-x$. a. Find two nondecreasing functions

$$
f, g: \mathbb{R} \rightarrow \mathbb{R} \text { s.t. } v=f-g
$$

b. Define $h: \mathbb{R} \rightarrow \mathbb{R}$ by $h(x)=x^{4}$.

Compute the Stieltjes integral $\int_{-2}^{7} h d v$.
C. Find two differentiable functions

$$
\begin{array}{r}
f_{0}, g_{0}: \mathbb{R} \rightarrow \mathbb{R} \text { s.t. } v=f_{0}-g_{0} \\
\text { s.t. } f_{0}^{\prime}>0 \text { on } \mathbb{R} \\
\text { and s.t. } g_{0}^{\prime}>0 \text { on } \mathbb{R} .
\end{array}
$$

2800-2. Let $g:=1_{[5,6]}^{[4,6]}:[4,6] \rightarrow\{0,1\}$
be the characteristic function of $[5,6]$ on $[4,6]$,
which is defined by $g(x)=\left\{\begin{array}{l}1, \text { if } 5 \leq x \leq 6, \\ 0,\end{array}\right.$ if $4 \leq x<5, ~ \$$
Define $h:[4,6] \rightarrow \mathbb{R}$ by $h(x)=e^{x}[g(x)]$.
Define $f:[4,6] \rightarrow \mathbb{R}$ by $f(x)=x^{3}$.
Compute the Stieltjes integral $\int_{4}^{6} f d h$.

