Financial Mathematics

Conditional probability and expectation

3000-1. Let Y, Z be indep. std normal RVs.
Compute $\operatorname{Pr}[(Y+2 Z>3) \mid(-2 Y+Z>7)]$. Hint: Let λ^{2} be Lebesgue measure on \mathbb{R}^{2}.
Let $f(x):=e^{-x^{2} / 2} / \sqrt{2 \pi}$.
Let $g(s, t):=[f(s)][f(t)]$, so $\delta_{Y, Z}=g \lambda^{2}$.
Also, $g(s, t)=e^{-\left(s^{2}+t^{2}\right) / 2} /(2 \pi)$
so g is invariant under rotations,
so $\delta_{Y, Z}$ is invariant under rotations.
Let $R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a carefully chosen rot' n.
Let $(U, V):=R(Y, Z)$.
Choose R s.t. U is a multiple of $Y+2 Z$ and and s.t. V is a multiple of $-2 Y+Z$.
Then $\delta_{U, V}=R_{*}\left(\delta_{Y, Z}\right)=\delta_{Y, Z}$,
so U and V are indep. std normal RVs.

3000-2. Define a PCRV X by

$$
X(\omega):=\left\{\begin{array}{r}
7, \text { if } \omega \in[0,0.35] \\
-3,
\end{array} \text { if } \omega \in(0.35,1] .\right.
$$

Let \mathcal{F} be the σ-subalgebra generated by $\{[0,0.6],(0.6,1]\}$.
Let \mathcal{G} be the σ-subalgebra generated by $\{[0,0.15],(0.15,0.6],(0.6,0.80],(0.80,1]\}$. a. Compute $\mathrm{E}[X \mid \mathcal{G}]$. b. Compute $\mathrm{E}[X \mid \mathcal{F}]$. c. Compute $\mathrm{E}[X]$.

3000-3. Let $I:=[0,1]$.
Let $\Omega:=I^{3}=I \times I \times I$, with Leb. measure.
Define $V: \Omega \rightarrow \mathbb{R}$ by $V(s, t, u):=s^{3}+t^{4}+e^{u}$.
Define $X, Y: \Omega \rightarrow \mathbb{R}$ by

$$
X(s, t, u)=s, \quad Y(s, t, u)=t
$$

Let $\mathcal{F}:=\mathcal{S}_{X}$.
Let $\mathcal{G}:=\mathcal{S}_{Y}$.
Let $\mathcal{H}:=\langle\mathcal{F} \cup \mathcal{G}\rangle_{\sigma}$.
a. Compute $\mathrm{E}[V \mid \mathcal{F}]$.
b. Compute $\mathrm{E}[V \mid \mathcal{H}]$.
c. Compute $\mathrm{E}[\mathrm{E}[V \mid \mathcal{F}] \quad \mathcal{G}]$.

