Financial Mathematics Conditional probability and expectation

3000-1. Let Y, Z be indep. std normal RVs. Compute Pr[(Y + 2Z > 3)|(-2Y + Z > 7)].Hint: Let λ^2 be Lebesgue measure on \mathbb{R}^2 . Let $f(x) := e^{-x^2/2} / \sqrt{2\pi}$. Let $g(s,t) := [f(s)][f(t)], \quad \text{so } \delta_{Y,Z} = g\lambda^2.$ Also, $g(s,t) = e^{-(s^2+t^2)/2}/(2\pi)$ so g is invariant under rotations. so $\delta_{Y,Z}$ is invariant under rotations. Let $R : \mathbb{R}^2 \to \mathbb{R}^2$ be a carefully chosen rot'n. Let (U, V) := R(Y, Z). Choose R s.t. U is a multiple of Y + 2Z and and s.t. V is a multiple of -2Y + Z.

Then $\delta_{U,V} = R_*(\delta_{Y,Z}) = \delta_{Y,Z}$, so U and V are indep. std normal RVs. **3000-2.** Define a PCRV *X* by $X(\omega) := \begin{cases} 7, \text{ if } \omega \in [0, 0.35] \\ -3, \text{ if } \omega \in (0.35, 1]. \end{cases}$

Let \mathcal{F} be the σ -subalgebra generated by $\{[0, 0.6], (0.6, 1]\}.$

Let G be the σ -subalgebra generated by $\{[0, 0.15], (0.15, 0.6], (0.6, 0.80], (0.80, 1]\}.$

a. Compute E[X|G]. b. Compute E[X|F].

c. Compute E[X].

3000-3. Let I := [0, 1]. Let $\Omega := I^3 = I \times I \times I$, with Leb. measure. Define $V : \Omega \to \mathbb{R}$ by $V(s, t, u) := s^3 + t^4 + e^u$. Define $X, Y : \Omega \to \mathbb{R}$ by $X(s,t,u) = s, \qquad Y(s,t,u) = t.$ Let $\mathcal{F} := \mathcal{S}_X$. Let $\mathcal{G} := \mathcal{S}_V$. Let $\mathcal{H} := \langle \mathcal{F} \cup \mathcal{G} \rangle_{\sigma}$. a. Compute $E[V|\mathcal{F}]$. b. Compute $E[V|\mathcal{H}]$. **c.** Compute $\mathsf{E}[\mathsf{E}[V|\mathcal{F}] \mid \mathcal{G}].$