Financial Mathematics Estimating variance

3400-1. Let λ be Lebesgue msr on \mathbb{R} .

Let $\Omega := (0,1)$. Let $\lambda_1 := \lambda | \Omega$.

Let $Z := \Phi^{-1} : \Omega \to \mathbb{R}$.

Define $X: \Omega^2 \to \mathbb{R}^2$ by X(s,t) = (Z(s), Z(t)).

Let $\mu := X_*(\lambda_1 \times \lambda_1)$. joint distribution of two indep std normal RVs

Let $\nu := \lambda \times \lambda$.

a. Compute $\frac{d\mu}{d\nu}$. joint PDF of joint distribution of two indep std normal RVs

Define $Y: \Omega^2 \to \mathbb{R}$ by Y(s,t) = 5(Z(s)) - 2(Z(t)).

Let $\tau := Y_*(\lambda_1 \times \lambda_1)$. distribution of a lin. comb. of two indep std normal RVs

b. Compute $\frac{d au}{d\lambda}$. PDF of distribution of sum of two indep std normal RVs

2

Hint: Use rotational invariance of μ .

- NOTE: The numbers below are made up.
 I'd be interested to know the correct standard deviation of heart rate
 (in the US population).
- 3400-2. Suppose we have 75 measurements of heart rates with a sample standard deviation of 8.3 beats per minute.

Using a χ^2 -table, find a 99% confidence interval for the standard deviation of the population.