Financial Mathematics

 Basics of processes
3600-1. Let W_{t} be a Brownian motion.

a. Compute $\mathrm{E}\left[W_{5}^{7} W_{4}^{9}\right]$.
b. Compute E $\left[\int_{0}^{6} W_{t}^{4} d t+\left(e^{W_{t}}-e^{2}\right)_{+}^{2} d W_{t}\right]$.

That is, compute the expectation of
the sum of $\int_{0}^{6} W_{t}^{4} d t$ and $\int_{0}^{6}\left(e^{W_{t}}-e^{2}\right)_{+}^{2} d W_{t}$.
c. Compute

$$
\mathrm{E}\left[\int_{0}^{5} W_{t}^{8} d t+\sin ^{2}\left(4 W_{t}-2\right) d W_{t}\right] .
$$

