Financial Mathematics

Girsanov's theorem and the martingale representation theorem

a. Find processes σ_{\bullet} and γ_{\bullet} s.t. $dX_t = \sigma_t (dW_t + \gamma_t dt)$.

3900-1. Let W_{\bullet} be a BM. Let $X_t := e^{5W_t + 4t^3}$

Express σ_t and γ_t in terms of W_t and t, and don't be surprised that γ_{\bullet} is deterministic. b. $\forall T>0$, compute the Novikov quantity

$$\mathsf{E}\left[\exp\left(\frac{1}{2}\int_{0}^{T}\gamma_{t}^{2}\,dt\right)\right].$$
 c. Let \tilde{W}_{\bullet} solve $d\tilde{W}_{t}=dW_{t}+\gamma_{t}\,dt$, $\tilde{W}_{0}=0.$ Explain why there's a change of measure Q s.t. \tilde{W} is a Q -Brownian motion.

d. $\forall T>0$, show that $\mathsf{E}\left[\int_0^T \sigma_t^2\,dt\right]<\infty$.

e. Explain why X_\bullet is a Q-martingale.

3900-2 a. Compute the expansion of ζ_T below, with two terms (inside exp). b. Using $d\tilde{W}_t = dW_t + \gamma_t \, dt$, compute the expansion of $\exp(-i \int_0^T \xi_s \, d\tilde{W}_s)$,

with two terms (inside exp).

with five terms (inside exp).

c. Compute the expansion of $\zeta_T \cdot \exp(-i \int_0^T \xi_s \, d\tilde{W}_s)$, with four terms (inside exp). d. Compute the expansion of ρ_T ,

Proof: Let $\zeta_{\bullet}:=\mathrm{EM}_{\bullet}[-\gamma].^{\mathrm{two\ terms}}$ $i:=\sqrt{-1}$ Let ν have Radon-Nikodỳm derivative ζ_T .

Let $\xi_{ullet}: [0,T] \to \mathbb{R}$ be piecewise constant. Nant: $\mathsf{E}[\zeta_T, \mathsf{exp}(-i)]^T \xi_s d\tilde{W}_s] = \mathsf{exp}(-\frac{1}{2} \int_0^T \xi_s^2 ds)$

Want: $\mathsf{E}[\zeta_T \cdot \mathsf{exp}(-i \int_0^T \xi_s \, d\tilde{W}_s)] = \mathsf{exp}(-\frac{1}{2} \int_0^T \xi_s^2 \, ds)$ $\rho_{\bullet} := \mathsf{EM}_{\bullet}[-i\xi - \gamma]$ a mart. on [0, T], & $\rho_0 = 1$;

 $ho_{ullet}:= \text{EM}_{ullet}[-\imath\xi-\gamma]$ a mart. On [0,T], $\swarrow
ho_0=1$ then $\text{E}[\stackrel{\text{five}}{
ho_T}]=1$, which expands to this. $\stackrel{\square}{\smile}$