Financial Mathematics

Girsanov's theorem and the martingale representation theorem

3900-1. Let W_{\bullet} be a BM. Let $X_{t}:=e^{5 W_{t}+4 t^{3}}$. a. Find processes σ_{\bullet} and γ_{\bullet}

$$
\text { s.t. } d X_{t}=\sigma_{t}\left(d W_{t}+\gamma_{t} d t\right)
$$

Express σ_{t} and γ_{t} in terms of W_{t} and t, and don't be surprised that γ_{\bullet} is deterministic. b. $\forall T>0$, compute the Novikov quantity

$$
\mathrm{E}\left[\exp \left(\frac{1}{2} \int_{0}^{T} \gamma_{t}^{2} d t\right)\right]
$$

c. Let \tilde{W}_{\bullet} solve $d \tilde{W}_{t}=d W_{t}+\gamma_{t} d t, \tilde{W}_{0}=0$.

Explain why there's a change of measure Q
s.t. \tilde{W} is a Q-Brownian motion.
d. $\forall T>0$, show that $\mathrm{E}\left[\int_{0}^{T} \sigma_{t}^{2} d t\right]<\infty$. e. Explain why X_{\bullet} is a Q-martingale.

3900-2 a. Compute the expansion of ζ_{T} below, with two terms (inside exp).
b. Using $d \tilde{W}_{t}=d W_{t}+\gamma_{t} d t$, compute the expansion of $\exp \left(-i \int_{0}^{T} \xi_{s} d \widetilde{W}_{s}\right)$, with two terms (inside exp).
c. Compute the expansion of

$$
\zeta_{T} \cdot \exp \left(-i \int_{0}^{T} \xi_{s} d \tilde{W}_{s}\right)
$$

with four terms (inside exp). d. Compute the expansion of ρ_{T}, with five terms (inside exp).
roof: Let $\zeta_{\bullet}:=E M_{\bullet}[-\gamma]$ two terms
Let ν have Radon-Nikodym derivative ζ_{T}.
Let $\xi_{\bullet}:[0, T] \rightarrow \mathbb{R}$ be piecewise constant.
Want: $\mathrm{E}\left[\mathrm{L}_{T}^{\mathrm{two}} \cdot \mathrm{exp}\left(-i \int_{0}^{T} \xi_{s} d \widetilde{W}_{s}\right)\right]=\stackrel{\text { one }}{\mathrm{ex}}\left(-\frac{1}{2} \int_{0}^{T} \xi_{s}^{2} d s\right)$ $\rho_{\bullet}:=\mathrm{EM} \bullet\left[-i \xi^{\text {five }}-\gamma\right]$ a mart. on $[0, T], \& \rho_{0}=1$; then $E\left[\rho_{T}^{\text {five }}\right]=1$,which expands to this.

