Financial Mathematics

Models in continuous time – the basics

4000-1. Suppose X_{\bullet} solves

$$dX_t = X_t(0.3 dW_t + 0.02 dt), \quad X_0 = \ln 7.$$

You may assume, $\forall t > 0$, that $X_t > 0$ surely.

a. Find σ_{\bullet} and γ_{\bullet} s.t. $dX_t = \sigma_t(dW_t + \gamma_t, dt)$.

Express your answers for σ_t and γ_t in terms of X_t and t.

b. Solve the SDE above for X_{\bullet} .

Hint: Remember the trick of setting $Y_t := ln(X_t)$ and using Itô.

c. $\forall T>0$, verify that the Novikov quantity

$$\mathsf{E}\left[\exp\left(\frac{1}{2}\int_0^T \gamma_t^2\,dt\right)\right] \text{ is finite.}$$

- 4000-2. Let $dX_t = 0.3 dW_t + 0.02 dt$, $X_0 = \ln 7$ be our (real-world) model of the logarithm of the price of the underlying.
- Assume that a risk-free investment of 1 dollar grows to $e^{(0.01)t}$ dollars at time t.
- a. Find the price of a derivative that pays $(6 e^{X_8})_+$ dollars at time t = 8.
- b. Find an expression F(x,t) of x and t s.t., if the price of the underlying at time t is equal to x, then the Δ -hedging strategy in part a above involves holding F(x,t) of the underlying.