
Notes on Measure Theory

Definitions and Facts from Topic 1500

• For any set M, 2M := {subsets of M} is called the power set of M.

The power set is the ”set of all sets”.

• Let A ⊆ 2M . A function µ : A → [0,∞] is finitely additive if,
∀integer n ≥ 1,∀pw − dj A1, ..., An ∈ A,

⊔
Aj ∈ A ⇒ µ(

⊔
Aj) =∑

µ(Aj).

Finite additivity states that if we have pairwise-disjoint sets in some
space, the measure of the union of those disjoint sets is equal to the
sum of the measures of the individual sets.

• Let A ⊆ 2M . A function µ : A → [0,∞] is σ-additive if µ is finitely
additive & ∀pw − dj A1, ..., An ∈ A,

⊔
Aj ∈ A ⇒ µ(

⊔
Aj) =

∑
µ(Aj).

σ-additive differs from finitely additive in that you can add infinitely
many things. Specifically, you can add countably many things. σ-
additive improves finitely-additive by making it ”infinite”.

• Let A ⊆ 2R. A function µ : A → [0,∞] is translation invariant if
∀A ∈ A,∀c ∈ R, we have: A+ c ∈ A and µ(A+ c) = µ(A).

Translation invariance states that if we measure some interval, we
should be able to move it and the measure should not change.

• I := intervals ⊆ 2R. λ0 : I → [0,∞] defined by λ0(I) = [sup I] −
[inf I] is called length.

For intervals based in the reals, the size of the interval is defined as
the supremum of the interval minus the infimum.

• Let A ⊆ B ⊆ 2M . Let µ : A → [0,∞], ν : B → [0,∞]. We say that ν
extends µ if: ∀A ∈ A, µ(A) = ν(A).

If you have two sigma algebras, one larger than the other, and a mea-
sure coincides in the sets from the smaller one, then it is said that the
measure on the bigger sigma algebra extends the smaller measure.
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• Let A ⊆ B ⊆ 2M . A function µ : A → [0,∞] is σ-finite (on M ) if
∃A1, A2, ... ∈ A s.t. M =

⋃
Aj and ∀j, µ(Aj) <∞.

A function is σ-finite if all of the constituent sets have measure less
than infinity.

Fact: Length is σ-additive, σ-finite, and translation invariant.

Fact: I is a near algebra on R, length σ-additive and σ-finite.

• A is an algebra (on M ) if M ∈ A and ∀A,B ∈ A, we have: A\B ∈ A.

Algebras exist to allow the formation of unions, intersections, and com-
plements. If we have some measure space, we want to be able to par-
tition it into pieces and measure those pieces; algebras allow that to
happen.

• A is a σ-algebra (on M ) if A is an algebra in M and
⋃
A ⊆ A.

A σ-algebra extends the definition of an algebra by allowing countably
many unions and intersections. Like other σ definitions, the σ-algebra
allows the notion of ”infinite” instead of ”finite” operations.

Fact: A is an algebra (on M) iff A 6= null and A is closed under: finite
union, finite intersection, and complement in M.

Fact: A is a σ-algebra (on M) iff A 6= null and A is closed under: countable
union, countable intersection, and complement in M.

• The σ-algebra (on M) generated by S ⊆ 2M is the intersection of all
of the σ-algebras on M that contain S. It is denoted < S >σ.

Generation is a process that creates a σ-algebra with the smallest num-
ber of elements that still captures all relevant information about the
σ-algebra.

• < µ0 >σ:=µ is called the measure generated by µ0.

The generated measure extends our definition of length to allow for
measuring σ-algebras.
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• A subset of R is Borel if it’s an element of < I >σ. The unique exten-
sion of length to {Borel sets in R} is called Lebesgue measure on R.

A subset is Borel if it is an element of the sigma algebra generated
by intersecting all intervals. Lebesgue measure can be thought of as the
analogue to length on Borel sets. Virtually everything is Borel.

Definitions and Facts from Topic 1600

• P,Q ⊆M are essentially equal (written P
.
= Q) if ∃null sets Z,Z ′ ⊆

M s.t. (P\Z)
⋃
Z ′ = Q.

Essentially equal sets can be visualized by imagining an interval [0,2].
Imagine sets P:=[0,0.5)(0.5,2] and Q:=[0,1)(1,2]. Although set P does
not cover the point 0.5 and set Q does not cover the point 1, since both
points have measure zero we say that the two are essentially equal.

• A subset C ⊆M is conull in M (or µ-conull) if M\C is null.

If the complement of a subset is null, then the subset is said to be
conull.

• A subset of P ⊆M is measurable (or µ-measurable) if ∃A ∈ A s.t.
P

.
= A.

If we wish to measure a set P, but do not have a measure to do so,
but another essentially equal set A is measurable, then we can measure
P also.

• The completion of (w.r.t. µ) is Ā := {µ−measurable sets}.

• The completion of µ is the function µ̄ : Ā → [0,∞]; defined by:
µ̄(P ) = µ(A),∀A ∈ A s.t. A

.
= P .

Measurable sets are one step beyond Borel sets because one may need
to add things of measure zero. We use the completion of the measure
to measure such things, since regular measure cannot be applied. We
need the definition of ”essentially equal” to make the leap.

Fact: A,B ∈ A, A .
= B ⇒ µ(A) = µ(B)

Fact: µ̄ : Ā → [0,∞] is σ-additive.
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Fact: {Borel sets in R} is countably generated.
< {(a, b)|a, b ∈ Q, a < b} >σ

• A subset of R is measurable if it’s an element of the completion of
{Borel sets in R} w.r.t. Lebesgue measure.

It’s hard to make non-measurable sets, or even non-Borel sets. This
follows from the earlier definition of a Borel set, which was essentially
defined as the sigma algebra generated by intersecting all intervals.

• A σ-algebra A on M is countably generated if ∃a countable set
C ⊆ A s.t. A =< C >σ.

If A is a countably generated σ-algebra on M, then the elements of
A are called Borel sets. If, furthermore, µ : A → [0,∞] is σ-finite,
then the elements of the completion of A w.r.t. µ are called measurable
sets.

• A Borel space is a set with a countably generated σ-algebra on it.

In an abstract space, if a countably-generated σ-algebra can be defined,
we call it a Borel space.

• A measure on a Borel space (M,B) is a σ-additive function µ : B →
[0,∞].

• A measure space is a Borel space with a σ-finite measure on it.

• A measure µ on a Borel space (M,B) is a probability measure if
µ(M) = 1.

• A measure µ on M is finite if µ(M) <∞.

• monotonicity: ∀A,B ∈ A, A ⊆ B ⇒ µ(A) ≤ µ(B)

Fact: µ is finite iff, ∀A ∈ A, µ(A) <∞

Fact: measures are monotone.
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• For any countable set M, counting measure on M is the measure
µ : 2M → [0,∞] defined by µ(S) = #S.

A measure on the (countably generated) Borel space (M, 2M).

• ∀set M, 2M is the discrete σ-algebra on M and {null,M} is the in-
discrete σ-algebra on M.

If M is a countable set, then the power set of M is the discrete σ-algebra
and the most coarse σ-algebra is the indiscrete.

Definitions and Facts from Topic 1700

• The σ-algebra inherited (or restricted) from A to W is A|W :=
{A

⋂
W |A ∈ A}.

TBD

• A Borel space is a set with a countably generated σ-algebra on it.
Sometimes called a measure space. A Borel space (M,A) is discrete
is A = 2M .

I always had the impression that a Borel space and a measure space
were different things...

• ∀z ∈ C,∀δ > 0, D(z, δ) := {w ∈ C||w − z| < δ}

• The standard σ-algebra on C is BC :=< {D(z, δ)|z ∈ C, δ > 0} >σ.

TBD

• ∀A ⊆ C, the standard σ-algebra on A is BA := BC|A.

TBD

• ∀finite F, standard σ-algebra on F is BF := 2F .

TBD

• ∀A ⊆ C, ∀finite F, the standard σ-algebra on A
⋃
F is

BAS
F :=< BA

⋃
BF >σ.

TBD

5



• Let A and B be σ-algebras on M and N, respectively. Let C :=
{A×B|A ∈ A, B ∈ B}.
A× B :=< C >σ is called the product of A and B.

TBD

• µ× ν :=< ω >σ is called product of µ and ν.

TBD

• Let B := {Borel sets in R}. A subset of R2 is Borel iff it’s an element
of B×B. A subset of R3 is Borel iff it’s an element of B×B×B. etc...

TBD

• Let λ be Lebesgue measure on R. λ×λ is Lebesgue measure on R2.
λ× λ× λ is Lebesgue measure on R3. etc...

TBD

• A subset of R2 is measurable if it’s an element of B̄×̄B̄.

this principle applies for R n

• Let M be a set. Let (N,B) be a Borel space. Let f : M → N be a
function.
f ∗(B) := {f−1(B)|B ∈ B} is the pull back σ-algebra on M (from B
via f ).

TBD

• Let (M,A) be a Borel space. Let (N,B) be a Borel space. Let
f : M → N be a function.
f is (A,B)-Borel (or just Borel) if f ∗B ⊆ A.

The expression f ∗B ⊆ A can be alternatively expressed as ∀B ∈ B, f−1(B) ∈
A

• Let (M,A, µ) be a measure space. Let (N,B) be a Borel space. Let
f : M → N be a function.
f is (µ,B)-measurable if f ∗B ⊆ Ā (or µ-measurable or just mea-
surable).
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The expression f ∗B ⊆ A can be alternatively expressed as ∀B ∈ B, f−1(B) ∈
A.

• The measure fB∗ : B → [0,∞] defined by (fB∗ (µ))(B) = µ̄(f−1(B)) is
the push forward measure on N (on B from µ via f ). (We usually
just write f∗(µ).)

TBD

Fact: Functoriality of push-forward: (g ◦f)∗(µ) = (g∗(f∗(µ))) = (g∗ ◦f∗)(µ).

• Let M be a set. Let x ∈M .
The delta mass (or point mass) at x (in M ) is the measure δx :
2M → [0,∞] (or δMx ) defined by δx(A) = {1, if x ∈ A; 0, if x /∈ A}.

TBD

• Let S ∈ B̄, i.e., let S be measurable. We say µ is concentrated off S
if µ̄(S) = 0. We say µ is concentrated on S if µ̄(M\S) = 0.

TBD

• C ⊆ Rd closed, ν a measure on C. Let S ⊆ C be closed. We say ν is
supported on S if ν(C\S) = 0.

TBD

• C ⊆ Rd closed, ν a measure on C. The support of ν the intersection
of all of the closed sets that support ν.

TBD

Definitions and Facts from Topic 2300

• We say f is simple if both f : M → R is measurable and f(M is finite,
in which case,

∫
M
f dµ :=

∑
y∈f(M) y[µ(f−1(y))]

TBD

• For any set S, for any R ⊆ S, the function 1SR : S → {0, 1} defined by
1SR(s) = {1 if s ∈ R; 0 if s ∈ S\R is the indicator function of R (in
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S ).

The indicator function is a simple switching technique, whereby the
function equals 1 if s is contained in R, and 0 if s is not contained in
R.

•

Definitions and Facts from Topic 2330

• We say f is integrable or L1 if both
∫
M
f+dµ <∞ and

∫
M
f−dµ <∞.

We can say a function is L1 if the integral of both the positive and
negative parts of the function are finite.

• We say f is integrable on A or L1 on A if χf is integrable.

In this case, χ represents an indicator function that returns 1 if A
is contained in M and 0 if it is not.

• Let (M,B) be a Borel space. Let µ and ν be two measures on (M,B).
We say ν is absolutely continuous w.r.t. µ if ∀Z ∈ B, µ(Z) = 0 ⇒
ν(Z) = 0.

One measure is absolutely continuous with respect to another measure
if, for some Z contained in the Borel set, Z’s measure is the same when
measured using both measures. An earlier definition of absolutely con-
tinuous used the notation ν << µ to express ”ν has at least as many
null sets as µ”.

• We say µ and ν are equivalent if both ν << µ and µ << ν, i.e. if
{Z ∈ B|µ(Z) = 0} = {Z ∈ B|ν(Z) = 0}.

If both measures of Z yield the same results, we say the measures are
equivalent.

Definitions and Facts from Topic 2360

• Measures ρ and σ on (M,B) are mutually singular if ∃Z ∈ B s.t. ρ(Z) =
0 and σ(M\Z) = 0.

TBD
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Fact: hµ << µ, ∀measurable h : M → [0,∞)

• Let (M,B, µ) be a probability space. A change of measure (for
(M,B, µ)) is a probability measure µ on (M,B) s.t. µ ≈ ν.

Suppose a measure exists on some Borel set. A change of measure may
take place if there is a new measure on the same set which is equivalent
(by the above definition of equivalent).

Fact: Sophisticated change of variables formula:
Let (M,A, µ) be a measure space.
Let (N,B) be a Borel space.
Let f : M → N be measurable.
Let g : N → R̄ be Borel.∫
M

(g ◦ f)dµ =
∫
N
gd(f∗µ)

Fact: How to integrate against h:∫
M

(fh)dµ =
∫
M
fd(hµ)∫

M
[f(x)][h(x)]dµ(x) =

∫
M
f(x)d(hµ)(x)

Fact: h := dν
dµ

Fact: φ∗(φ
′ · λ) = λ

Definitions and Facts from Topic 2400

Fact: Monotone Convergence Theorem
Let (M,A, µ) be a measure space. Let f1, f2, f3, ... : M → [0,∞] be a non-
decreasing sequence of measurable functions. Assume limn→∞ fn ≥ C on M.
Then limn→∞

∫
M
fndµ =

∫
M

limn→∞ fndµ.

Fact: Fatou’s Lemma
Let (M,A, µ) be a measure space. Let g1, g2, g3, ... : M → [0,∞] be measur-
able. Then

∫
M

lim infn→∞ gndµ ≤ lim infn→∞
∫
M
gndµ.

• A sequence f1, f2, f3, ... : M → [−∞,∞] is L1-minorized if ∃L1 func-
tion g : M → [0,∞] s.t. ∀integers n ≥ 1,−g ≤ fn.
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TBD

• A sequence f1, f2, f3, ... : M → [−∞,∞] is L1-majorized if ∃L1 func-
tion g : M → [0,∞] s.t. ∀integers n ≥ 1, fn ≤ g.

TBD

• A sequence f1, f2, f3, ... : M → [−∞,∞] is L1-enveloped if ∃L1 func-
tion g : M → [0,∞] s.t. ∀integers n ≥ 1,−g ≤ fn ≤ g.

TBD

Fact: Bounded Convergence Theorem
Let (M,A, µ) be a measure space.
Assume µ(M) < ∞. Let K > 0. Let f1, f2, f3, ... : M → [−K,K] be mea-
surable and ptwise convergent. Then

∫
M

limn→∞ fndµ = limn→∞
∫
M
fndµ.

Fact: Dominated Convergence Theorem
Let (M,A, µ) be a measure space.
Let f1, f2, f3, ... : M → [−∞,∞] be measurable, L1-enveloped and ptwise
convergent. Then

∫
M

limn→∞ fndµ = limn→∞
∫
M
fndµ.

Definitions and Facts from Topic 2450

Fact: Let I := [0, 1]. ∀measurable f : M → I,∃simple s : M → I,∀ε >
0, s.t. f − ε ≤ s ≤ f on M.

Fact: ∀measurable f : M → [0,∞],∃simple s1, s2, .... : M → [0,∞] s.t. s1, s2, ... ≤
f and s.t. limn→∞ sn = f

• A Borel space (M,A) is standard if ∀x, y ∈ M,x 6= y ⇒ ∃A ∈
A s.t. x ∈ A and s.t. y 6∈ A

Imagine a space M and a σ-algebra A. One point, x, may lie within
A. If the Borel space is standard, point y does not lie within A. The
σ-algebra ”separates points”.

• A measure space (M,A, µ) is standard if (M,A) is standard.

Definitions and Facts from Topic 2500
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• For any set S, let idS : S → S be the identity function on S, defined
by: idS(s) = s.

Definition of an identity function.

• Two Borel space (M,A) and (N,B) are isomorphic (or Borel iso-
morphic) if ∃f : M → N Borel ∃g : N → M Borel s.t. g ◦ f =
idM and f ◦ g = idN .

In this case, we say that f : M → N and g : N → M are Borel
isomorphisms.

• Two measure spaces (M,A, µ) and (N,B, ν) are isomorphic (or mea-
sure isomorphic) if ∃f : M → N Borel ∃g : N →M Borel s.t. g◦f =
idM and f ◦ g = idN and f∗(µ) = ν and g∗(ν) = µ.

In this case, we say that f : M → N and g : N → M are measure
isomorphisms.

• A measure space (M,A, µ) is standard if (M,A) is standard.

See above definition of a Borel space being standard.

Definitions and Facts from Topic 2700

• Let (Ω,B, µ) be a probability space. A random variable (or RV) on
(Ω,B, µ) is a measurable map Ω→ R.

This is the generalized version of a PCRV. Whereas a PCRV is a func-
tion from the unit interval to the reals, we now have a map from a
measure space to the reals.

• Let X : Ω → R be a RV on (Ω,B, µ). The distribution fof X is
δX := X∗(µ)

Here X is defined as a random variable (by the definition above). Since
X is a random variable, it must have a distribution. That distribution
is given by the notation defined here.

• A measure on R is proper if every bounded interval has finite measure.

An example of this is Lebesgue measure on R.
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• For any measure µ on R, the cumulative distribution function (or
CDF) of µ is the function CDFµ : R→ [0,∞] defined by CDFµ(s) =
µ((−∞, s]).

The cumulative distribution function describes the probability that a
variable with a given distribution will be found at a value less than or
equal to x. It is cumulative in the sense that as the value x increases,
the total value returned by the function increases.

• f : R→ R is cadlag if ∀a ∈ R, limx→a+(f(x)) = f(a) and limx→a−(f(x))
exists.

Cadlag is an acronym for a French phrase that translates to ”contin-
uous from right and limit from left,” which adequately describes the
process taking place.

• f : R → R is CDF type if f is nondecreasing, bounded, cadlag and
f(−∞) = 0.

TBD

• f : R → R is a regular CDF if f is increasing, continuous, and
f(−∞) = 0, f(∞) = 1.

TBD

• µ is a regular distribution if µ is a probability measure, ∀x, µ({x}) =
0 and ∀(a < b), µ((a, b)) > 0.

TBD

• Let µ be a measure on R. Then a measurable function h : R→ [0,∞]
is a probability density function (PDF) for µ if µ = hλ.

TBD

• A RV is standard normal if φ′ is a PDF of its distribution.

TBD

• CB := {continuous, bounded functions R→ R}

TBD
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• CE := {continuous, exponentially − bounded functions R→ R}.

TBD

• Let µ1, µ2, ... and ν be probability measures on R. Then µ1, µ2, ...→ ν
means: ∀f ∈ CB,

∫
Rn fdµn →

∫
Rn fdν. The same expression holds

∀f ∈ CE (continuous, exponentially-bounded).

TBD

• For any probability measure µ on R, the Fourier transform of µ is
the function Fµ : R→ C defined by Fµ :=

∫∞
−∞ e

−itxdµ(x).

TBD

Fact: Fµn → Fν,∀t⇒ µn → ν.

Fact: F(φ′λ) = e−t
2/2

Corollary: A RV X is standard normal iff FδX = e−t
2/2, i.e. the

Fourier transform of the distribution of X is e−t
2/2.

Fact: ∀probability measures µ and ν on R,F(µ ∗ ν) = [Fµ][Fν].

• The standard normal distribution on R is φ′λ.

TBD

• A RV is standard normal if φ′ is a PDF on its distribution. i.e.: A
RV X is standard normal iff δX = φ′λ, i.e., the distribution of X is
the standard normal distribution.

TBD

• Define A : R×R→ R by A(x, y) = x+ y. For any two measures µ and
ν on R, the convolution of µ and ν is the measure µ ∗ ν on R defined
by µ ∗ ν := A∗(µ× ν).

TBD
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• A measure space (M,B, µ) is nonatomic if ∀x ∈M,µ({x}) = 0.

A measure space is nonatomic if all the points in M have measure zero.

Definitions and Facts from Topic 2800

• A σ-finite signed measure on (M,B) is a function ω : B → [−∞,∞]
s.t., for some pair µ, ν of σ-finite measures on (M,B) we have (µ(M), ν(M)) 6=
(∞,∞) and ω = µ− ν, i.e., ∀B ∈ B, ω(B) = (µ(B))− (ν(B)).

TBD

• v : [a, b]→ R has bounded variation if ∃nondecreasing f, g : [a, b]→
R s.t. v = f − g.

TBD

• Let v : [a, b] → R have bounded variation, and let f, g : [a, b] → R be
nondecreasing functions such that v = f − g. We define dv := df − dg.

TBD

Fact: Let v : [a, b] → R be continuous, differentiable on (a,b). Then v

has bounded variation. Then [f(ν(b))]− [f(ν(a))] =
∫ b

a
f ′(ν(t))dν(t).

Definitions and Facts from Topic 2900

• An event (in Ω or in (Ω,A, µ)) is a measurable subset of Ω.

We define an event to be something measurable in a set.

• The probability of an event E is Pr[E] := µ̄(E). We write E a.s. if
Pr[E ]=1.

The probability of an event is defined as the completed measure of the
event.

• Let (M,B) be a standard Borel space. An (M,B)-RV or M -RV (on
(Ω,A, µ)) or on Ω is a measurable map Ω→M .

Just like a PCRV is a function from [0, 1] → R, an RV works in a
similar way, mapping values from Ω to a σ-algebra.
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• Let X : Ω→M be an M -RV. For all Borel S ⊆M , the event X ∈ S
is {ω ∈ Ω|X(ω) ∈ S} = X−1(S).

TBD

• Referencing the definition above, X is deterministic if ∃p ∈ M s.t.
X=p a.s.

TBD

• A RV (on (Ω,A, µ) or on Ω) is a measurable map Ω→ R.

Like the definition of an M-RV from above, the definition of a random
variable is a direct analogue to a PCRV mapping from the unit interval
to the reals.

• Let X : Ω → R be a RV on Ω. The event a ≥ X is the event
X ∈ (−∞, a]; the event a < X ≤ b is the event X ∈ (a, b];, etc.

If we are trying to measure the probability of an event, we are essentially
testing whether the event falls within a certain interval. For example:
Pr[1 ≤ X] = µ̄(X−1([1,∞)).

• Let X : Ω → C be a C-RV on Ω. The expectation or mean of X is
Eµ[X] := E[X] :=

∫
Ω
Xdµ.

The definition of expectation for a complex random variable is sim-
ilar to the definition of expectation for other random variables. We
integrate X over the space.

• X is integrable or L1 if E[|X|] is finite; in this case we define: X◦ :=
X − (E[X]), so that X◦ has mean zero.

If X is integrable, we define a new X◦ such that we normalize the new
X to have mean zero.

• X is square integrable or L2 if E[|X|2] <∞.

If the expectation of the square of X is finite, then X is square inte-
grable.
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Fact: X is L2 ⇒ X is L1 and X◦ is L2

Fact: X is deterministic iff Var[X]=0

Fact: X is square integrable if V ar[X] <∞

Fact: X and Y are uncorrelated if Cov[X,Y]=0

• Let X : Ω → R be an L2 RV on Ω. The variance of X is V ar[X] :=
E[(X◦)2].

TBD

• Let X : Ω → R be square integrable. X is standard if both E[X]=0
and Var[X]=1.

• The standard deviation of X is SD[X] :=
√
V ar[X].

• Let X, Y : Ω → R be square integrable. The covariance of X,Y is
Cov[X,Y]:=((Var[X+Y]-Var[X]-Var[Y])/2).

• Let X, Y : Ω → R be square integrable and non-deterministic. The
correlation of X,Y is Corr[X,Y]:=Cov[X,Y]/(SD[X]SD[Y]).

• For all Borel space (N, C), for all Borel f : M → N, f(X) := f ◦X.

Definition of composition. The traditional notation for a function f(X)
is defined as f composed with X.

• The distribution of X is δµ[X] = δ[X] = δµX = δX := X∗(µ).

Various alternative notations for a distribution.

Fact: For all Borel space (N, C), for all Borel f : M → N, δf(X) = f∗(δX)

Fact: For all Borel S ⊆M,Pr[X ∈ S] = δX(S)

Fact: Say M = R. Then E[f(X)] =
∫∞
−∞ fdδX
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• The joint variable of X and Y is the (M × N) − RV (X, Y ) : Ω →
M ×N defined by (X, Y )(ω) = (X(ω), Y (ω)).

TBD

• δX,Y := δ(X,Y ) is the joint distribution of X and Y ; it’s a measure
on M ×N .

TBD

• Let (M,B), (N, C) be standard Borel spaces. Define p : M × N →
M, q : M × N → N by p(x, y) = x and q(x, y) = y. ∀measure ω on
M × N , the marginals of ω are p∗(ω) and q∗(ω); they are measures
on M and N, respectively.

When dealing with joint variables and joint distributions, the individ-
ual variables and distributions that make up the joint are known as the
marginals of the joint.

Fact: For all measures µ on M and ν on N, p∗(µ×ν) = µ and q∗(µ×ν) =
ν. ”The marginals of a product measure are the factor measures.”

Fact: For all standard probability space (Ω,B, µ),∀M − RV X : Ω →
M, ∀N − RV Y : Ω → N, p∗(δX,Y ) = δX and q∗(δX,Y ) = δY ”The marginals
of a joint distribution are the individual distributions.”

Fact: E[f(X, Y )] =
∫

R2 f(x, y)dδX,Y (x, y)

• ∀E ∈ A, ∀F ∈ A,E and F are info-equivalent if E∆F is null, where
A is an event.

The definition essentially states that if we know whether or not ω ∈ E,
then we also know whether or not ω ∈ F .

• For all sets E,F, the symmetric difference of E and F is E∆F :=
(E\F )

⋃
(F\E).

TBD

• Let X : Ω → M be an M -RV. The σ-algebra of X is SBX := SX :=
X∗(B) := {X−1(B)|B ∈ B}.
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TBD

• For any σ-subalgebra S of Ā, we say that X is S-measurable if
S̄X ⊆ S.

TBD

• Two events E,F ∈ Ā are independent if µ̄(E
⋂
F ) = [µ̄(E)][µ̄(F )]

This definition of independence is analogous to the definition by ex-
pectation: E[XY]=E[X]E[Y]. This definition adapts the traditional def-
inition to include events.

• Two subsets E ,F ⊆ Ā are independent if, ∀E ∈ E , F ∈ F , E and F
are independent.

If all the events present in a subset are independent from all the events
in another subset, we say the two subsets are independent.

• An M -RV X and a subset E ⊆ Ā are independent if SX and ⊆ E are
independent.

A random variable on some Borel space M and a subset are independent
if the σ-algebra and the subset are independent. Refer to the definition
a few rows above to review the σ-algebra definition.

• An M -RV X and an N -RV Y are independent if SX and SY are
independent.

Two random variables on respective Borel spaces are independent if
their σ-algebras are independent.

Fact: X and Y are independent iff δX,Y = δX × δY .

Fact: X, Y independent, (P,D), (Q, E) standard Borel spaces⇒ ∀Borel f :
M → P, ∀Borel g : N → Q, f(X) and g(Y) are independent.

Fact: Say M = N = R and X, Y, L2. Then if X,Y are independent then
they are uncorrelated. Cov[X,Y]=(E[XY])-(E[X])(E[Y]).

Fact: F(µ ∗ ν) = (Fµ)(Fν)
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• Define: A : R × R → R by A(x, y) = x + y. For all measures
µ, ν on R, µ ∗ ν := A∗(µ× ν) is the convolution of µ and ν.

Convolution is the process by which we take the distributions of two
random variables and multiply them instead of summing them.

• The joint variable of X1, ..., Xn is the M -RV (X1, ..., Xn) : Ω → M
defined by (X1, ..., Xn)(ω) = (X1(ω), ..., Xn(ω)). For all standard Borel
spaces (P ,D), for all Borel f : M → P , f(X1, ..., Xn) := f((X1, ..., Xn)) =
f ◦ (X1, ..., Xn); it’s a P -RV on Ω.

TBD

• δX1,...,Xn := δX1,...,Xn is the joint distribution of X1, ..., Xn; it’s a mea-
sure on M.

TBD

• X1, ..., Xn are (jointly) independent if δX1,...,Xn = δX1 × ...× δXn .

TBD

• For all measure τ on M, the marginals of τ are (p1)∗(τ), ..., (pn)∗(τ);
they are measures on M1, ...,Mn, respectively.

TBD

Fact: For all measures µ1 on M1, ..., µn on Mn,∀k, (pk)∗(µ1 × ...× µn) =
µk.

Fact: For all standard probability space (Ω,A, µ),∀M1−RV X1, ...,∀Mn−
RV Xn, all on Ω,∀k, (pk)∗(δX1,...,Xn) = δXk

Fact: For all Borel S1 ⊆ M1, ..., Sn ⊆ Mn, P r[(X1 ∈ S1)&...&(Xn ∈
Sn)] = (Pr[X1 ∈ S1])...(Pr[Xn ∈ Sn])

Fact: For all standard Borel spaces (P1,D1), ..., (Pn,Dn),∀f1 : M1 →
P1, ...,∀fn : Mn → Pn, all Borel, f1(X1), ..., fn(Xn) are jointly independent.
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Fact: δX1+...+Xn = δX1 ∗ ... ∗ δXn

Corollary: FδX1+...+Xn = (FδX1)...(FδXn)

• Let X be a random variable. Let F : R → [0, 1] be the CDF of (the
distribution of) X. The grade of X is gr[X ]:=F (X ).

TBD

Fact: If X has no values of positive probability, i.e., if, ∀c ∈ R, P r[X =
c] = 0, then δ[gr[X]] is Lebesgue measure on [0,1].

• The joint distribution ofX1, ..., Xn is δ[X1, ..., Xn] := (X1, ...Xn)∗(µ),
a probability measure on Rn.

TBD

• The copula of X1, ..., Xn is cop[X1, ..., Xn] := δ[gr[X1], ..., gr[Xn]].

TBD

• X1, X2, ... M -RVs,... (all on Ω) X1, X2, ... are iid means both X1, X2, ...
are (jointly) independent and for all integers j, k,≥ 1, δXj

= δXk

TBD

Definitions and Facts from Topic 3000

• Let (Ω,A, µ) be a standard probability space. Let E be an event, i.e.,
a measurable subset of Ω, so E ∈ Ā. The probability of E is defined
by Pr[E] := µ̄(E).

TBD

• Let E and F be events. The conditional probability of E given F
is defined by Pr[E|F ] := µ̄(E

T
F )

µ̄(F )
.

TBD
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• Let E be an event and let X be an L1 RV. The conditional expec-
tation of X given E is E[X|E] := 1

µ̄(E)

∫
E
Xdµ.

TBD

• The conditional expectation of V given P is the RV E[V |P ] : Ω→
R defined by (E[V |P ])(ω) = E[V |Pω]. Here, P is a finite partition of Ω.

TBD

Fact: Let U := E[V |P ]. Then U is < Pσ >-measurable, and, ∀P ∈<
P >σ of positive measure, E[U |P ] = E[V |P ].

• TBD

Definitions and Facts from Topic 3100

• Let P and Q be partitions of Ω. We say that P is finer than Q if:
∀P ∈ P ,∃Q ∈ Q s.t. P ⊆ Q.

If the question ”Which set in P contained ω?” gives enough info to
answer ”Which set in Q contained ω?”, then we say that P is finer
than Q.

Fact: P finer than Q ⇒ ∀Q ∈ Q,∃P1, ..., Pk ∈ P s.t. Q = P1 t ... t Pk.

Fact: P finer than Q implies any Q-measurable RV is P-measurable.

• The Tower Law: Let V be a L1 RV. Let P and Q be finite, posi-
tive measure partitions of Ω. Assume that P is finer than Q. Then
E[E[V |P ]|Q] = E[V |Q].

Forcing P-measurability is weaker than forcing Q-measurability, so do-
ing both is redundant.

• Let S and T be σ-subalgebras on Ω. We say that S than T if T ⊆ S.

TBD
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• The Power Tower Law: Let V be an L1 RV. Let S be a σ-algebra
on Ω. Then E[E[V |S]] = E[V ].

TBD

Definitions and Facts from Topic 3200

• For all functions f, g : R → R, the convolution of f and g is the
function f ∗ g defined by (f ∗ g)(x) =

∫∞
−∞[f(t)][g(x− t)]dt.

This definition was used on the final exam from last year in one of
the first computation problems

• Γ(s) := [
∫∞
−∞ z

xe−e
x
dx]z:→es

This is the definition of the gamma function, which is used to calcu-
late the PDF for the chi-squared distribution. There is a simpler way
to define the gamma function in a practical way, as given in the two
definitions below.

• For integer values of n, the result of the gamma function is given by
(n− 1)!

• For non-integer values of n, the result of the gamma function is given
by (2n)!

4nn!

√
π. Note that Γ(1

2
) =
√
π.

• (∗nψ)(x) = x(n/2)−1e−x/2

2n/2Γ(n/2)

This function yields the PDF for a chi-squared distribution with n
degrees of freedom. Note that it relies on the above definition of the
gamma function.

Fact: Let (M,B), (N, C), (P,D) be Borel spaces. Let F : M × N → P
be Borel. Let x ∈ M and let ν be a measure on N. Then F∗(δx × ν) =
(F (x, •))∗(ν).

Fact: Let (M,B), (N, C) be Borel spaces. Let F : M → N be a Borel
isomorphism. Let µ be a measure on M. Let g : M → [0,∞] be measurable.
Then F∗(gµ) = [g ◦ F−1][F∗(µ)].

Fact: If f is a PDF for µ and if g is a PDF for ν then f ∗ g is a PDF for
µ ∗ ν.
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Definitions and Facts from Topic 3300

• TBD

Definitions and Facts from Topic 3400

• TBD

Definitions and Facts from Topic 3500

• The exponential distribution describes the time between events that
occur continuously and independently at a constant average rate.

• The CDF for the exponential distribution is as follows: CDFδX (x) :=
{1− e−αx, if x ≥ 0; 0, if x ≤ 0

• The PDF for the exponential distribution is as follows: PDFδX (x) :=
{αe−αx, if x > 0; 0, if x < 0

Fact: X, Y independent ⇒ δX+Y = δX ∗ δY

• TODO: Gamma, Poisson, and empirical distributions

Definitions and Facts from Topic 3600

• Fix a probability space (Ω,B, µ). For all Borel spaces (T,A), a T-
process is a function X : T → {RV s on Ω} s.t. (ω, t) 7→ (X(t))(ω) :
Ω× T→ R is measurable.

A process is a series of random variables together in a sequence that
describe the evolution of a path of some kind.

• A process is a [0,∞)-process.

By default, a process is defined on the positive real numbers.

• A spacetime-process is an (R× [0,∞))-process.

A process may be defined in terms of both space and time. For instance,
a Brownian motion has parameters that describe both the position of a
particle and a related time index.
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• A process X• (Xt or X(t)) is continuous if ∀ω ∈ Ω, t 7→ Xt(ω) :
[0,∞)→ R is continuous.

Some processes are continuous, like Brownian motion, and others are
not, like a Levy process.

• For any set T ⊆ R, a T-filtration is a function F• : T → {σ −
subalgebras} s.t. t, u ∈ T, t ≤ u⇒ Ft ⊆ Fu.

A filtration can be thought of a σ-algebra that becomes increasingly
finer as time passes. The σ-algebra allows for the measurement of the
process. If one thinks of data appearing on a screen and that data is
changing, a filtration is a collection of those data.

• A RV X : Ω→ R is S-measurable if for all Borel B ⊆ R, X−1(B) ∈ S.

TBD

• X• is F•-adapted means: ∀t ∈ T, Xt is Ft-measurable.

TBD

• The filtration ofX• is the filtration FX• defined by FXt :=<
⋃
s≤t SXs >σ.

As mentioned in the definition of filtration above, the filtration is an
increasingly finer σ-algebra.

• The (t1, ..., td)-marginal of X• is the joint distribution δ[Xt1 , ..., Xtd ].

TBD

• X• = Y• in finite dimensional (f.d.) marginals, written X•
δ
=

Y• means: for all integers d ≥ 1, ∀t1, ...td ∈ [0,∞), δ[Xt1 , ..., Xtd ] =
δ[Yt1 , ..., Ytd ].

TBD

Fact: Any process is adapted to its filtration.

Various Useful Facts You Should Know

• E[cA] = c(E[A])
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• V ar[cA] = c2V ar[A]

• SD[cA] = |c|SD[A]

• E[c+A] = c+ E[A]

• V ar[c+A] = V ar[A]

• SD[c+A] = SD[A]

• E[
∑nA] = n× E[A]

• V ar[
∑nA] = n× V ar[A]

• SD[
∑nA] =

√
n× SD[A]

Finite is to algebra as countable is to sigma algebra
sigma-additive is a more ”robust” form of additivity than finitely-additive??
sigma is another way to say infinite
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