Notes on Measure Theory

Definitions and Facts from Topic 1500

- For any set $M, 2^{M}:=\{$ subsets of $M\}$ is called the power set of M.

The power set is the "set of all sets".

- Let $\mathcal{A} \subseteq 2^{M}$. A function $\mu: \mathcal{A} \rightarrow[0, \infty]$ is finitely additive if, \forall integer $n \geq 1, \forall p w-d j A_{1}, \ldots, A_{n} \in \mathcal{A}, \bigsqcup A_{j} \in \mathcal{A} \Rightarrow \mu\left(\bigsqcup A_{j}\right)=$ $\sum \mu\left(A_{j}\right)$.

Finite additivity states that if we have pairwise-disjoint sets in some space, the measure of the union of those disjoint sets is equal to the sum of the measures of the individual sets.

- Let $\mathcal{A} \subseteq 2^{M}$. A function $\mu: \mathcal{A} \rightarrow[0, \infty]$ is σ-additive if μ is finitely additive \& $\forall p w-d j A_{1}, \ldots, A_{n} \in \mathcal{A}, \bigsqcup A_{j} \in \mathcal{A} \Rightarrow \mu\left(\bigsqcup A_{j}\right)=\sum \mu\left(A_{j}\right)$.
σ-additive differs from finitely additive in that you can add infinitely many things. Specifically, you can add countably many things. σ additive improves finitely-additive by making it "infinite".
- Let $\mathcal{A} \subseteq 2^{\mathbb{R}}$. A function $\mu: \mathcal{A} \rightarrow[0, \infty]$ is translation invariant if $\forall A \in \mathcal{A}, \forall c \in \mathbb{R}$, we have: $A+c \in \mathcal{A}$ and $\mu(A+c)=\mu(A)$.

Translation invariance states that if we measure some interval, we should be able to move it and the measure should not change.

- $\mathcal{I}:=$ intervals $\subseteq 2^{\mathbb{R}}$. $\lambda_{0}: \mathcal{I} \rightarrow[0, \infty]$ defined by $\lambda_{0}(I)=[$ sup $I]-$ [inf I] is called length.

For intervals based in the reals, the size of the interval is defined as the supremum of the interval minus the infimum.

- Let $\mathcal{A} \subseteq \mathcal{B} \subseteq 2^{M}$. Let $\mu: \mathcal{A} \rightarrow[0, \infty], \nu: \mathcal{B} \rightarrow[0, \infty]$. We say that ν extends μ if: $\forall A \in \mathcal{A}, \mu(A)=\nu(A)$.

If you have two sigma algebras, one larger than the other, and a measure coincides in the sets from the smaller one, then it is said that the measure on the bigger sigma algebra extends the smaller measure.

- Let $\mathcal{A} \subseteq \mathcal{B} \subseteq 2^{M}$. A function $\mu: \mathcal{A} \rightarrow[0, \infty]$ is σ-finite (on M) if $\exists A_{1}, A_{2}, \ldots \in \mathcal{A}$ s.t. $M=\bigcup A_{j}$ and $\forall j, \mu\left(A_{j}\right)<\infty$.

A function is σ-finite if all of the constituent sets have measure less than infinity.

Fact: Length is σ-additive, σ-finite, and translation invariant.
Fact: \mathcal{I} is a near algebra on \mathbb{R}, length σ-additive and σ-finite.

- \mathcal{A} is an algebra (on M) if $M \in \mathcal{A}$ and $\forall A, B \in \mathcal{A}$, we have: $A \backslash B \in \mathcal{A}$.

Algebras exist to allow the formation of unions, intersections, and complements. If we have some measure space, we want to be able to partition it into pieces and measure those pieces; algebras allow that to happen.

- \mathcal{A} is a σ-algebra $($ on $M)$ if \mathcal{A} is an algebra in M and $\bigcup \mathcal{A} \subseteq \mathcal{A}$.

A σ-algebra extends the definition of an algebra by allowing countably many unions and intersections. Like other σ definitions, the σ-algebra allows the notion of "infinite" instead of "finite" operations.

Fact: \mathcal{A} is an algebra (on M) iff $\mathcal{A} \neq$ null and \mathcal{A} is closed under: finite union, finite intersection, and complement in M.

Fact: \mathcal{A} is a σ-algebra (on M) iff $\mathcal{A} \neq$ null and \mathcal{A} is closed under: countable union, countable intersection, and complement in M.

- The σ-algebra (on M) generated by $\mathcal{S} \subseteq 2^{M}$ is the intersection of all of the σ-algebras on M that contain S. It is denoted $\left\langle\mathcal{S}>_{\sigma}\right.$.

Generation is a process that creates a σ-algebra with the smallest number of elements that still captures all relevant information about the σ-algebra.

- $<\mu_{0}>_{\sigma}:=\mu$ is called the measure generated by μ_{0}.

The generated measure extends our definition of length to allow for measuring σ-algebras.

- A subset of \mathbb{R} is Borel if it's an element of $\langle\mathcal{I}\rangle{ }_{\sigma}$. The unique extension of length to $\{$ Borel sets in $\mathbb{R}\}$ is called Lebesgue measure on \mathbb{R}.

A subset is Borel if it is an element of the sigma algebra generated by intersecting all intervals. Lebesgue measure can be thought of as the analogue to length on Borel sets. Virtually everything is Borel.

Definitions and Facts from Topic 1600

- $P, Q \subseteq M$ are essentially equal (written $P \doteq Q$) if \exists null sets $Z, Z^{\prime} \subseteq$ M s.t. $(P \backslash Z) \bigcup Z^{\prime}=Q$.

Essentially equal sets can be visualized by imagining an interval [0,2]. Imagine sets $P:=[0,0.5)(0.5,2]$ and $Q:=[0,1)(1,2]$. Although set P does not cover the point 0.5 and set Q does not cover the point 1, since both points have measure zero we say that the two are essentially equal.

- A subset $C \subseteq M$ is conull in M (or μ-conull) if $M \backslash C$ is null.

If the complement of a subset is null, then the subset is said to be conull.

- A subset of $P \subseteq M$ is measurable (or μ-measurable) if $\exists A \in \mathcal{A}$ s.t. $P \doteq A$.

If we wish to measure a set P, but do not have a measure to do so, but another essentially equal set A is measurable, then we can measure P also.

- The completion of (w.r.t. μ) is $\overline{\mathcal{A}}:=\{\mu-$ measurable sets $\}$.
- The completion of μ is the function $\bar{\mu}: \overline{\mathcal{A}} \rightarrow[0, \infty]$; defined by: $\bar{\mu}(P)=\mu(A), \forall A \in \mathcal{A}$ s.t. $A \doteq P$.

Measurable sets are one step beyond Borel sets because one may need to add things of measure zero. We use the completion of the measure to measure such things, since regular measure cannot be applied. We need the definition of "essentially equal" to make the leap.

Fact: $A, B \in \mathcal{A}, A \doteq B \Rightarrow \mu(A)=\mu(B)$
Fact: $\bar{\mu}: \overline{\mathcal{A}} \rightarrow[0, \infty]$ is σ-additive.

Fact: \{Borel sets in $\mathbb{R}\}$ is countably generated.
$<\{(a, b) \mid a, b \in \mathbb{Q}, a<b\}>{ }_{\sigma}$

- A subset of \mathbb{R} is measurable if it's an element of the completion of $\{$ Borel sets in $\mathbb{R}\}$ w.r.t. Lebesgue measure.

It's hard to make non-measurable sets, or even non-Borel sets. This follows from the earlier definition of a Borel set, which was essentially defined as the sigma algebra generated by intersecting all intervals.

- A σ-algebra \mathcal{A} on M is countably generated if \exists a countable set $\mathcal{C} \subseteq \mathcal{A}$ s.t. $\mathcal{A}=\left\langle\mathcal{C}>_{\sigma}\right.$.

If A is a countably generated σ-algebra on M, then the elements of A are called Borel sets. If, furthermore, $\mu: \mathcal{A} \rightarrow[0, \infty]$ is σ-finite, then the elements of the completion of A w.r.t. μ are called measurable sets.

- A Borel space is a set with a countably generated σ-algebra on it.

In an abstract space, if a countably-generated σ-algebra can be defined, we call it a Borel space.

- A measure on a Borel space (M, \mathcal{B}) is a σ-additive function $\mu: \mathcal{B} \rightarrow$ $[0, \infty]$.
- A measure space is a Borel space with a σ-finite measure on it.
- A measure μ on a Borel space (M, \mathcal{B}) is a probability measure if $\mu(M)=1$.
- A measure μ on M is finite if $\mu(M)<\infty$.
- monotonicity: $\forall A, B \in \mathcal{A}, A \subseteq B \Rightarrow \mu(A) \leq \mu(B)$

Fact: μ is finite iff, $\forall A \in \mathcal{A}, \mu(A)<\infty$
Fact: measures are monotone.

- For any countable set M, counting measure on M is the measure $\mu: 2^{M} \rightarrow[0, \infty]$ defined by $\mu(S)=\# S$.

A measure on the (countably generated) Borel space ($M, 2^{M}$).

- \forall set $M, 2^{M}$ is the discrete σ-algebra on M and $\{n u l l, M\}$ is the indiscrete σ-algebra on M.

If M is a countable set, then the power set of M is the discrete σ-algebra and the most coarse σ-algebra is the indiscrete.

Definitions and Facts from Topic 1700

- The σ-algebra inherited (or restricted) from \mathcal{A} to W is $\mathcal{A} \mid W:=$ $\{A \bigcap W \mid A \in \mathcal{A}\}$.
$T B D$
- A Borel space is a set with a countably generated σ-algebra on it. Sometimes called a measure space. A Borel space (M, \mathcal{A}) is discrete is $\mathcal{A}=2^{M}$.

I always had the impression that a Borel space and a measure space were different things...

- $\forall z \in \mathbb{C}, \forall \delta>0, D(z, \delta):=\{w \in \mathbb{C}| | w-z \mid<\delta\}$
- The standard σ-algebra on \mathbb{C} is $\mathcal{B}_{\mathbb{C}}:=<\{D(z, \delta) \mid z \in \mathbb{C}, \delta>0\}>_{\sigma}$. $T B D$
- $\forall A \subseteq \mathbb{C}$, the standard σ-algebra on A is $\mathcal{B}_{A}:=\mathcal{B}_{\mathbb{C}} \mid A$.
$T B D$
- \forall finite F, standard σ-algebra on F is $\mathcal{B}_{F}:=2^{F}$.
$T B D$
- $\forall A \subseteq \mathbb{C}$, \forall finite F, the standard σ-algebra on $A \bigcup F$ is $\mathcal{B}_{A \cup F}:=<\mathcal{B}_{A} \bigcup \mathcal{B}_{F}>_{\sigma}$.
$T B D$
- Let \mathcal{A} and \mathcal{B} be σ-algebras on M and N, respectively. Let \mathcal{C} := $\{A \times B \mid A \in \mathcal{A}, B \in \mathcal{B}\}$.
$\mathcal{A} \times \mathcal{B}:=\left\langle\mathcal{C}>_{\sigma}\right.$ is called the product of \mathcal{A} and \mathcal{B}.
$T B D$
- $\mu \times \nu:=\langle\omega\rangle_{\sigma}$ is called product of μ and ν.

TBD

- Let $\mathcal{B}:=\{$ Borel sets in $\mathbb{R}\}$. A subset of \mathbb{R}^{2} is Borel iff it's an element of $\mathcal{B} \times \mathcal{B}$. A subset of \mathbb{R}^{3} is Borel iff it's an element of $\mathcal{B} \times \mathcal{B} \times \mathcal{B}$. etc...
$T B D$
- Let λ be Lebesgue measure on $\mathbb{R} . \lambda \times \lambda$ is Lebesgue measure on \mathbb{R}^{2}. $\lambda \times \lambda \times \lambda$ is Lebesgue measure on \mathbb{R}^{3}. etc...
$T B D$
- A subset of \mathbb{R}^{2} is measurable if it's an element of $\overline{\mathcal{B}} \overline{\times} \overline{\mathcal{B}}$.
this principle applies for $R n$
- Let M be a set. Let (N, \mathcal{B}) be a Borel space. Let $f: M \rightarrow N$ be a function.
$f^{*}(\mathcal{B}):=\left\{f^{-1}(B) \mid B \in \mathcal{B}\right\}$ is the pull back σ-algebra on M (from \mathcal{B} via f).
$T B D$
- Let (M, \mathcal{A}) be a Borel space. Let (N, \mathcal{B}) be a Borel space. Let $f: M \rightarrow N$ be a function.
f is $(\mathcal{A}, \mathcal{B})$-Borel (or just Borel) if $f^{*} \mathcal{B} \subseteq \mathcal{A}$.
The expression $f^{*} \mathcal{B} \subseteq \mathcal{A}$ can be alternatively expressed as $\forall B \in \mathcal{B}, f^{-1}(B) \in$ \mathcal{A}
- Let (M, \mathcal{A}, μ) be a measure space. Let (N, \mathcal{B}) be a Borel space. Let $f: M \rightarrow N$ be a function.
f is (μ, \mathcal{B})-measurable if $f^{*} \mathcal{B} \subseteq \overline{\mathcal{A}}$ (or μ-measurable or just measurable).

The expression $f^{*} \mathcal{B} \subseteq \mathcal{A}$ can be alternatively expressed as $\forall B \in \mathcal{B}, f^{-1}(B) \in$ \mathcal{A}.

- The measure $f_{*}^{\mathcal{B}}: \mathcal{B} \rightarrow[0, \infty]$ defined by $\left(f_{*}^{\mathcal{B}}(\mu)\right)(B)=\bar{\mu}\left(f^{-1}(B)\right)$ is the push forward measure on N (on \mathcal{B} from μ via f). (We usually just write $f_{*}(\mu)$.)
$T B D$

Fact: Functoriality of push-forward: $(g \circ f)_{*}(\mu)=\left(g_{*}\left(f_{*}(\mu)\right)\right)=\left(g_{*} \circ f_{*}\right)(\mu)$.

- Let M be a set. Let $x \in M$.

The delta mass (or point mass) at x (in M) is the measure δ_{x} : $2^{M} \rightarrow[0, \infty]\left(\right.$ or $\left.\delta_{x}^{M}\right)$ defined by $\delta_{x}(A)=\{1$, if $x \in A ; 0$, if $x \notin A\}$.

TBD

- Let $S \in \overline{\mathcal{B}}$, i.e., let S be measurable. We say μ is concentrated off S if $\bar{\mu}(S)=0$. We say μ is concentrated on S if $\bar{\mu}(M \backslash S)=0$.
$T B D$
- $C \subseteq \mathbb{R}^{d}$ closed, ν a measure on C. Let $S \subseteq C$ be closed. We say ν is supported on S if $\nu(C \backslash S)=0$.
$T B D$
- $C \subseteq \mathbb{R}^{d}$ closed, ν a measure on C. The support of ν the intersection of all of the closed sets that support ν.
$T B D$
Definitions and Facts from Topic 2300
- We say f is simple if both $f: M \rightarrow \mathbb{R}$ is measurable and $f(M$ is finite, in which case, $\int_{M} f d \mu:=\sum_{y \in f(M)} y\left[\mu\left(f^{-1}(y)\right)\right]$
$T B D$
- For any set S, for any $R \subseteq S$, the function $1_{R}^{S}: S \rightarrow\{0,1\}$ defined by $1_{R}^{S}(s)=\{1$ if $s \in R ; 0$ if $s \in S \backslash R$ is the indicator function of R (in

The indicator function is a simple switching technique, whereby the function equals 1 if s is contained in R, and 0 if s is not contained in R.

Definitions and Facts from Topic 2330

- We say f is integrable or L^{1} if both $\int_{M} f_{+} d \mu<\infty$ and $\int_{M} f_{-} d \mu<\infty$.

We can say a function is L^{1} if the integral of both the positive and negative parts of the function are finite.

- We say f is integrable on \mathbf{A} or L^{1} on \mathbf{A} if χf is integrable.

In this case, χ represents an indicator function that returns 1 if A is contained in M and 0 if it is not.

- Let (M, \mathcal{B}) be a Borel space. Let μ and ν be two measures on (M, \mathcal{B}). We say ν is absolutely continuous w.r.t. μ if $\forall Z \in \mathcal{B}, \mu(Z)=0 \Rightarrow$ $\nu(Z)=0$.

One measure is absolutely continuous with respect to another measure if, for some Z contained in the Borel set, Z's measure is the same when measured using both measures. An earlier definition of absolutely continuous used the notation $\nu \ll \mu$ to express " ν has at least as many null sets as μ ".

- We say μ and ν are equivalent if both $\nu \ll \mu$ and $\mu \ll \nu$, i.e. if $\{Z \in \mathcal{B} \mid \mu(Z)=0\}=\{Z \in \mathcal{B} \mid \nu(Z)=0\}$.

If both measures of Z yield the same results, we say the measures are equivalent.

Definitions and Facts from Topic 2360

- Measures ρ and σ on (M, \mathcal{B}) are mutually singular if $\exists Z \in \mathcal{B}$ s.t. $\rho(Z)=$ 0 and $\sigma(M \backslash Z)=0$.
$T B D$

Fact: $h \mu \ll \mu, \forall$ measurable $h: M \rightarrow[0, \infty)$

- Let (M, \mathcal{B}, μ) be a probability space. A change of measure (for $(M, \mathcal{B}, \mu))$ is a probability measure μ on (M, \mathcal{B}) s.t. $\mu \approx \nu$.

Suppose a measure exists on some Borel set. A change of measure may take place if there is a new measure on the same set which is equivalent (by the above definition of equivalent).

Fact: Sophisticated change of variables formula:
Let (M, \mathcal{A}, μ) be a measure space.
Let (N, \mathcal{B}) be a Borel space.
Let $f: M \rightarrow N$ be measurable.
Let $g: N \rightarrow \overline{\mathbb{R}}$ be Borel.
$\int_{M}(g \circ f) d \mu=\int_{N} g d\left(f_{*} \mu\right)$
Fact: How to integrate against h:
$\int_{M}(f h) d \mu=\int_{M} f d(h \mu)$
$\int_{M}[f(x)][h(x)] d \mu(x)=\int_{M} f(x) d(h \mu)(x)$
Fact: $h:=\frac{d \nu}{d \mu}$
Fact: $\phi_{*}\left(\phi^{\prime} \cdot \lambda\right)=\lambda$
Definitions and Facts from Topic 2400
Fact: Monotone Convergence Theorem
Let (M, \mathcal{A}, μ) be a measure space. Let $f_{1}, f_{2}, f_{3}, \ldots: M \rightarrow[0, \infty]$ be a nondecreasing sequence of measurable functions. Assume $\lim _{n \rightarrow \infty} f_{n} \geq C$ on M. Then $\lim _{n \rightarrow \infty} \int_{M} f_{n} d \mu=\int_{M} \lim _{n \rightarrow \infty} f_{n} d \mu$.

Fact: Fatou's Lemma
Let (M, \mathcal{A}, μ) be a measure space. Let $g_{1}, g_{2}, g_{3}, \ldots: M \rightarrow[0, \infty]$ be measurable. Then $\int_{M} \lim \inf _{n \rightarrow \infty} g_{n} d \mu \leq \liminf _{n \rightarrow \infty} \int_{M} g_{n} d \mu$.

- A sequence $f_{1}, f_{2}, f_{3}, \ldots: M \rightarrow[-\infty, \infty]$ is L^{1}-minorized if $\exists L^{1}$ function $g: M \rightarrow[0, \infty]$ s.t. \forall integers $n \geq 1,-g \leq f_{n}$.
$T B D$
- A sequence $f_{1}, f_{2}, f_{3}, \ldots: M \rightarrow[-\infty, \infty]$ is L^{1}-majorized if $\exists L^{1}$ function $g: M \rightarrow[0, \infty]$ s.t. \forall integers $n \geq 1, f_{n} \leq g$.
$T B D$
- A sequence $f_{1}, f_{2}, f_{3}, \ldots: M \rightarrow[-\infty, \infty]$ is L^{1}-enveloped if $\exists L^{1}$ function $g: M \rightarrow[0, \infty]$ s.t. \forall integers $n \geq 1,-g \leq f_{n} \leq g$.
$T B D$

Fact: Bounded Convergence Theorem
Let (M, \mathcal{A}, μ) be a measure space.
Assume $\mu(M)<\infty$. Let $K>0$. Let $f_{1}, f_{2}, f_{3}, \ldots: M \rightarrow[-K, K]$ be measurable and ptwise convergent. Then $\int_{M} \lim _{n \rightarrow \infty} f_{n} d \mu=\lim _{n \rightarrow \infty} \int_{M} f_{n} d \mu$.

Fact: Dominated Convergence Theorem
Let (M, \mathcal{A}, μ) be a measure space.
Let $f_{1}, f_{2}, f_{3}, \ldots: M \rightarrow[-\infty, \infty]$ be measurable, L^{1}-enveloped and ptwise convergent. Then $\int_{M} \lim _{n \rightarrow \infty} f_{n} d \mu=\lim _{n \rightarrow \infty} \int_{M} f_{n} d \mu$.

Definitions and Facts from Topic 2450
Fact: Let $I:=[0,1]$. \forall measurable $f: M \rightarrow I, \exists$ simple $s: M \rightarrow I, \forall \varepsilon>$ 0 , s.t. $f-\varepsilon \leq s \leq f$ on M.

Fact: \forall measurable $f: M \rightarrow[0, \infty]$, \exists simple $s_{1}, s_{2}, \ldots .: M \rightarrow[0, \infty]$ s.t. $s_{1}, s_{2}, \ldots \leq$ f and s.t. $\lim _{n \rightarrow \infty} s_{n}=f$

- A Borel space (M, \mathcal{A}) is standard if $\forall x, y \in M, x \neq y \Rightarrow \exists A \in$ \mathcal{A} s.t. $x \in A$ and s.t. $y \notin A$

Imagine a space M and a σ-algebra \mathcal{A}. One point, x, may lie within \mathcal{A}. If the Borel space is standard, point y does not lie within \mathcal{A}. The σ-algebra "separates points".

- A measure space (M, \mathcal{A}, μ) is standard if (M, \mathcal{A}) is standard.

Definitions and Facts from Topic 2500

- For any set S, let $i d_{S}: S \rightarrow S$ be the identity function on S, defined by: $i d_{S}(s)=s$.

Definition of an identity function.

- Two Borel space (M, \mathcal{A}) and (N, \mathcal{B}) are isomorphic (or Borel isomorphic) if $\exists f: M \rightarrow N$ Borel $\exists g: N \rightarrow M$ Borel s.t. $g \circ f=$ $i d_{M}$ and $f \circ g=i d_{N}$.

In this case, we say that $f: M \rightarrow N$ and $g: N \rightarrow M$ are Borel isomorphisms.

- Two measure spaces (M, \mathcal{A}, μ) and (N, \mathcal{B}, ν) are isomorphic (or measure isomorphic) if $\exists f: M \rightarrow N$ Borel $\exists g: N \rightarrow M$ Borel s.t. $g \circ f=$ $i d_{M}$ and $f \circ g=i d_{N}$ and $f_{*}(\mu)=\nu$ and $g_{*}(\nu)=\mu$.

In this case, we say that $f: M \rightarrow N$ and $g: N \rightarrow M$ are measure isomorphisms.

- A measure space (M, \mathcal{A}, μ) is standard if (M, \mathcal{A}) is standard.

See above definition of a Borel space being standard.
Definitions and Facts from Topic 2700

- Let $(\Omega, \mathcal{B}, \mu)$ be a probability space. A random variable (or $\mathbf{R V}$) on $(\Omega, \mathcal{B}, \mu)$ is a measurable map $\Omega \rightarrow \mathbb{R}$.

This is the generalized version of a PCRV. Whereas a PCRV is a function from the unit interval to the reals, we now have a map from a measure space to the reals.

- Let $X: \Omega \rightarrow \mathbb{R}$ be a RV on $(\Omega, \mathcal{B}, \mu)$. The distribution fof X is $\delta_{X}:=X_{*}(\mu)$

Here X is defined as a random variable (by the definition above). Since X is a random variable, it must have a distribution. That distribution is given by the notation defined here.

- A measure on \mathbb{R} is proper if every bounded interval has finite measure.

An example of this is Lebesgue measure on \mathbb{R}.

- For any measure μ on \mathbb{R}, the cumulative distribution function (or CDF) of μ is the function $C D F_{\mu}: \mathbb{R} \rightarrow[0, \infty]$ defined by $C D F_{\mu}(s)=$ $\mu((-\infty, s])$.

The cumulative distribution function describes the probability that a variable with a given distribution will be found at a value less than or equal to x. It is cumulative in the sense that as the value x increases, the total value returned by the function increases.

- $f: \mathbb{R} \rightarrow \mathbb{R}$ is cadlag if $\forall a \in \mathbb{R}, \lim _{x \rightarrow a^{+}}(f(x))=f(a)$ and $\lim _{x \rightarrow a^{-}}(f(x))$ exists.

Cadlag is an acronym for a French phrase that translates to "continuous from right and limit from left," which adequately describes the process taking place.

- $f: \mathbb{R} \rightarrow \mathbb{R}$ is CDF type if f is nondecreasing, bounded, cadlag and $f(-\infty)=0$.
$T B D$
- $f: \mathbb{R} \rightarrow \mathbb{R}$ is a regular CDF if f is increasing, continuous, and $f(-\infty)=0, f(\infty)=1$.
$T B D$
- μ is a regular distribution if μ is a probability measure, $\forall x, \mu(\{x\})=$ 0 and $\forall(a<b), \mu((a, b))>0$.
$T B D$
- Let μ be a measure on \mathbb{R}. Then a measurable function $h: \mathbb{R} \rightarrow[0, \infty]$ is a probability density function (PDF) for μ if $\mu=h \lambda$.
$T B D$
- A RV is standard normal if ϕ^{\prime} is a PDF of its distribution.
$T B D$
- $C_{B}:=\{$ continuous, bounded functions $\mathbb{R} \rightarrow \mathbb{R}\}$
$T B D$
- $C_{E}:=\{$ continuous, exponentially - bounded functions $\mathbb{R} \rightarrow \mathbb{R}\}$.
$T B D$
- Let μ_{1}, μ_{2}, \ldots and ν be probability measures on \mathbb{R}. Then $\mu_{1}, \mu_{2}, \ldots \rightarrow \nu$ means: $\forall f \in C_{B}, \int_{\mathbb{R}^{n}} f d \mu_{n} \rightarrow \int_{\mathbb{R}^{n}} f d \nu$. The same expression holds $\forall f \in C_{E}$ (continuous, exponentially-bounded).
$T B D$
- For any probability measure μ on \mathbb{R}, the Fourier transform of μ is the function $\mathcal{F} \mu: \mathbb{R} \rightarrow \mathbb{C}$ defined by $\mathcal{F} \mu:=\int_{-\infty}^{\infty} e^{-i t x} d \mu(x)$.
$T B D$

Fact: $\mathcal{F} \mu_{n} \rightarrow \mathcal{F} \nu, \forall t \Rightarrow \mu_{n} \rightarrow \nu$.
Fact: $\mathcal{F}\left(\phi^{\prime} \lambda\right)=e^{-t^{2} / 2}$
Corollary: A RV X is standard normal iff $\mathcal{F} \delta_{X}=e^{-t^{2} / 2}$, i.e. the Fourier transform of the distribution of X is $e^{-t^{2} / 2}$.

Fact: \forall probability measures μ and ν on $\mathbb{R}, \mathcal{F}(\mu * \nu)=[\mathcal{F} \mu][\mathcal{F} \nu]$.

- The standard normal distribution on \mathbb{R} is $\phi^{\prime} \lambda$.
$T B D$
- A RV is standard normal if ϕ^{\prime} is a PDF on its distribution. i.e.: A RV X is standard normal iff $\delta_{X}=\phi^{\prime} \lambda$, i.e., the distribution of X is the standard normal distribution.
$T B D$
- Define $A: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ by $A(x, y)=x+y$. For any two measures μ and ν on \mathbb{R}, the convolution of μ and ν is the measure $\mu * \nu$ on \mathbb{R} defined by $\mu * \nu:=A_{*}(\mu \times \nu)$.
$T B D$
- A measure space (M, \mathcal{B}, μ) is nonatomic if $\forall x \in M, \mu(\{x\})=0$.

A measure space is nonatomic if all the points in M have measure zero.
Definitions and Facts from Topic 2800

- A σ-finite signed measure on (M, \mathcal{B}) is a function $\omega: \mathcal{B} \rightarrow[-\infty, \infty]$ s.t., for some pair μ, ν of σ-finite measures on (M, \mathcal{B}) we have $(\mu(M), \nu(M)) \neq$ (∞, ∞) and $\omega=\mu-\nu$, i.e., $\forall B \in \mathcal{B}, \omega(B)=(\mu(B))-(\nu(B))$.
$T B D$
- $v:[a, b] \rightarrow \mathbb{R}$ has bounded variation if \exists nondecreasing $f, g:[a, b] \rightarrow$ \mathbb{R} s.t. $v=f-g$.
$T B D$
- Let $v:[a, b] \rightarrow \mathbb{R}$ have bounded variation, and let $f, g:[a, b] \rightarrow \mathbb{R}$ be nondecreasing functions such that $v=f-g$. We define $d v:=d f-d g$. $T B D$

Fact: Let $v:[a, b] \rightarrow \mathbb{R}$ be continuous, differentiable on (a, b). Then v has bounded variation. Then $[f(\nu(b))]-[f(\nu(a))]=\int_{a}^{b} f^{\prime}(\nu(t)) d \nu(t)$.

Definitions and Facts from Topic 2900

- An event (in Ω or in $(\Omega, \mathcal{A}, \mu)$) is a measurable subset of Ω.

We define an event to be something measurable in a set.

- The probability of an event E is $\operatorname{Pr}[E]:=\bar{\mu}(E)$. We write E a.s. if $\operatorname{Pr}[E]=1$.

The probability of an event is defined as the completed measure of the event.

- Let (M, \mathcal{B}) be a standard Borel space. An (M, \mathcal{B})-RV or \boldsymbol{M}-RV (on $(\Omega, \mathcal{A}, \mu))$ or on Ω is a measurable $\operatorname{map} \Omega \rightarrow M$.

Just like a PCRV is a function from $[0,1] \rightarrow \mathbb{R}$, an $R V$ works in a similar way, mapping values from Ω to a σ-algebra.

- Let $X: \Omega \rightarrow M$ be an \boldsymbol{M}-RV. For all Borel $S \subseteq M$, the event $X \in S$ is $\{\omega \in \Omega \mid X(\omega) \in S\}=X^{-1}(S)$.
$T B D$
- Referencing the definition above, X is deterministic if $\exists p \in M$ s.t. $X=p$ a.s.

TBD

- A $\mathbf{R V}($ on $(\Omega, \mathcal{A}, \mu)$ or on $\Omega)$ is a measurable $\operatorname{map} \Omega \rightarrow \mathbb{R}$.

Like the definition of an $\boldsymbol{M} \boldsymbol{-} \boldsymbol{R} \boldsymbol{V}$ from above, the definition of a random variable is a direct analogue to a PCRV mapping from the unit interval to the reals.

- Let $X: \Omega \rightarrow \mathbb{R}$ be a RV on Ω. The event $a \geq X$ is the event $X \in(-\infty, a]$; the event $a<X \leq b$ is the event $X \in(a, b]$;, etc.

If we are trying to measure the probability of an event, we are essentially testing whether the event falls within a certain interval. For example: $\operatorname{Pr}[1 \leq X]=\bar{\mu}\left(X^{-1}([1, \infty))\right.$.

- Let $X: \Omega \rightarrow \mathbb{C}$ be a \mathbb{C}-RV on Ω. The expectation or mean of X is $E^{\mu}[X]:=E[X]:=\int_{\Omega} X d \mu$.

The definition of expectation for a complex random variable is similar to the definition of expectation for other random variables. We integrate X over the space.

- X is integrable or L^{1} if $E[|X|]$ is finite; in this case we define: $X^{\circ}:=$ $X-(E[X])$, so that X° has mean zero.

If X is integrable, we define a new X° such that we normalize the new X to have mean zero.

- X is square integrable or L^{2} if $E\left[|X|^{2}\right]<\infty$.

If the expectation of the square of X is finite, then X is square integrable.

Fact: X is $L^{2} \Rightarrow X$ is L^{1} and X° is L^{2}
Fact: X is deterministic iff $\operatorname{Var}[\mathrm{X}]=0$
Fact: X is square integrable if $\operatorname{Var}[X]<\infty$
Fact: X and Y are uncorrelated if $\operatorname{Cov}[\mathrm{X}, \mathrm{Y}]=0$

- Let $X: \Omega \rightarrow \mathbb{R}$ be an $L^{2} \mathrm{RV}$ on Ω. The variance of X is $\operatorname{Var}[X]:=$ $E\left[\left(X^{\circ}\right)^{2}\right]$.
$T B D$
- Let $X: \Omega \rightarrow \mathbb{R}$ be square integrable. X is standard if both $\mathrm{E}[\mathrm{X}]=0$ and $\operatorname{Var}[\mathrm{X}]=1$.
- The standard deviation of X is $S D[X]:=\sqrt{\operatorname{Var}[X]}$.
- Let $X, Y: \Omega \rightarrow \mathbb{R}$ be square integrable. The covariance of X, Y is $\operatorname{Cov}[\mathrm{X}, \mathrm{Y}]:=((\operatorname{Var}[\mathrm{X}+\mathrm{Y}]-\operatorname{Var}[\mathrm{X}]-\operatorname{Var}[\mathrm{Y}]) / 2)$.
- Let $X, Y: \Omega \rightarrow \mathbb{R}$ be square integrable and non-deterministic. The correlation of X, Y is $\operatorname{Corr}[\mathrm{X}, \mathrm{Y}]:=\operatorname{Cov}[\mathrm{X}, \mathrm{Y}] /(\mathrm{SD}[\mathrm{X}] \mathrm{SD}[\mathrm{Y}])$.
- For all Borel space (N, \mathcal{C}), for all Borel $f: M \rightarrow N, f(X):=f \circ X$.

Definition of composition. The traditional notation for a function $f(X)$ is defined as f composed with X.

- The distribution of X is $\delta^{\mu}[X]=\delta[X]=\delta_{X}^{\mu}=\delta_{X}:=X_{*}(\mu)$.

Various alternative notations for a distribution.

Fact: For all Borel space (N, \mathcal{C}), for all Borel $f: M \rightarrow N, \delta_{f(X)}=f_{*}\left(\delta_{X}\right)$
Fact: For all Borel $S \subseteq M, \operatorname{Pr}[X \in S]=\delta_{X}(S)$
Fact: Say $M=\mathbb{R}$. Then $E[f(X)]=\int_{-\infty}^{\infty} f d \delta_{X}$

- The joint variable of X and Y is the $(M \times N)-R V(X, Y): \Omega \rightarrow$ $M \times N$ defined by $(X, Y)(\omega)=(X(\omega), Y(\omega))$.
$T B D$
- $\delta_{X, Y}:=\delta_{(X, Y)}$ is the joint distribution of X and Y; it's a measure on $M \times N$.
$T B D$
- Let $(M, \mathcal{B}),(N, \mathcal{C})$ be standard Borel spaces. Define $p: M \times N \rightarrow$ $M, q: M \times N \rightarrow N$ by $p(x, y)=x$ and $q(x, y)=y$. \forall measure ω on $M \times N$, the marginals of ω are $p_{*}(\omega)$ and $q_{*}(\omega)$; they are measures on M and N, respectively.

When dealing with joint variables and joint distributions, the individual variables and distributions that make up the joint are known as the marginals of the joint.

Fact: For all measures μ on M and ν on $N, p_{*}(\mu \times \nu)=\mu$ and $q_{*}(\mu \times \nu)=$ ν. "The marginals of a product measure are the factor measures."

Fact: For all standard probability space $(\Omega, \mathcal{B}, \mu), \forall M-R V X: \Omega \rightarrow$ $M, \forall N-R V Y: \Omega \rightarrow N, p_{*}\left(\delta_{X, Y}\right)=\delta_{X}$ and $q_{*}\left(\delta_{X, Y}\right)=\delta_{Y}$ "The marginals of a joint distribution are the individual distributions."

Fact: $E[f(X, Y)]=\int_{\mathbb{R}^{2}} f(x, y) d \delta_{X, Y}(x, y)$

- $\forall E \in \mathcal{A}, \forall F \in \mathcal{A}, E$ and F are info-equivalent if $E \Delta F$ is null, where \mathcal{A} is an event.

The definition essentially states that if we know whether or not $\omega \in E$, then we also know whether or not $\omega \in F$.

- For all sets E, F, the symmetric difference of E and F is $E \Delta F:=$ $(E \backslash F) \bigcup(F \backslash E)$.
$T B D$
- Let $X: \Omega \rightarrow M$ be an M-RV. The σ-algebra of X is $\mathcal{S}_{X}^{\mathcal{B}}:=\mathcal{S}_{X}:=$ $X^{*}(\mathcal{B}):=\left\{X^{-1}(B) \mid B \in \mathcal{B}\right\}$.
$T B D$
- For any σ-subalgebra \mathcal{S} of $\overline{\mathcal{A}}$, we say that X is \mathcal{S}-measurable if $\overline{\mathcal{S}_{X}} \subseteq \mathcal{S}$.
$T B D$
- Two events $E, F \in \overline{\mathcal{A}}$ are independent if $\bar{\mu}(E \bigcap F)=[\bar{\mu}(E)][\bar{\mu}(F)]$

This definition of independence is analogous to the definition by expectation: $E[X Y]=E[X] E[Y]$. This definition adapts the traditional definition to include events.

- Two subsets $\mathcal{E}, \mathcal{F} \subseteq \overline{\mathcal{A}}$ are independent if, $\forall E \in \mathcal{E}, F \in \mathcal{F}, E$ and F are independent.

If all the events present in a subset are independent from all the events in another subset, we say the two subsets are independent.

- An $M-\mathrm{RV} X$ and a subset $\mathcal{E} \subseteq \overline{\mathcal{A}}$ are independent if \mathcal{S}_{X} and $\subseteq E$ are independent.

A random variable on some Borel space M and a subset are independent if the σ-algebra and the subset are independent. Refer to the definition a few rows above to review the σ-algebra definition.

- An M-RV X and an N-RV Y are independent if \mathcal{S}_{X} and \mathcal{S}_{Y} are independent.

Two random variables on respective Borel spaces are independent if their σ-algebras are independent.

Fact: X and Y are independent iff $\delta_{X, Y}=\delta_{X} \times \delta_{Y}$.
Fact: X, Y independent, $(P, \mathcal{D}),(Q, \mathcal{E})$ standard Borel spaces $\Rightarrow \forall$ Borel f : $M \rightarrow P, \forall$ Borel $g: N \rightarrow Q, f(X)$ and $g(Y)$ are independent.

Fact: Say $M=N=\mathbb{R}$ and X, Y, L^{2}. Then if X, Y are independent then they are uncorrelated. $\operatorname{Cov}[\mathrm{X}, \mathrm{Y}]=(\mathrm{E}[\mathrm{XY}])-(\mathrm{E}[\mathrm{X}])(\mathrm{E}[\mathrm{Y}])$.

Fact: $\mathcal{F}(\mu * \nu)=(\mathcal{F} \mu)(\mathcal{F} \nu)$

- Define: $A: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ by $A(x, y)=x+y$. For all measures μ, ν on $\mathbb{R}, \mu * \nu:=A_{*}(\mu \times \nu)$ is the convolution of μ and ν.

Convolution is the process by which we take the distributions of two random variables and multiply them instead of summing them.

- The joint variable of X_{1}, \ldots, X_{n} is the M-RV $\left(X_{1}, \ldots, X_{n}\right): \Omega \rightarrow M$ defined by $\left(X_{1}, \ldots, X_{n}\right)(\omega)=\left(X_{1}(\omega), \ldots, X_{n}(\omega)\right)$. For all standard Borel spaces $(\mathcal{P}, \mathcal{D})$, for all Borel $f: M \rightarrow \mathcal{P}, f\left(X_{1}, \ldots, X_{n}\right):=f\left(\left(X_{1}, \ldots, X_{n}\right)\right)=$ $f \circ\left(X_{1}, \ldots, X_{n}\right)$; it's a $P-\mathrm{RV}$ on Ω.

$T B D$

- $\delta_{X_{1}, \ldots, X_{n}}:=\delta_{X_{1}, \ldots, X_{n}}$ is the joint distribution of X_{1}, \ldots, X_{n}; it's a measure on M.
$T B D$
- X_{1}, \ldots, X_{n} are (jointly) independent if $\delta_{X_{1}, \ldots, X_{n}}=\delta_{X_{1}} \times \ldots \times \delta_{X_{n}}$.
$T B D$
- For all measure τ on M, the marginals of τ are $\left(p_{1}\right)_{*}(\tau), \ldots,\left(p_{n}\right)_{*}(\tau)$; they are measures on M_{1}, \ldots, M_{n}, respectively.
$T B D$

Fact: For all measures μ_{1} on M_{1}, \ldots, μ_{n} on $M_{n}, \forall k,\left(p_{k}\right)_{*}\left(\mu_{1} \times \ldots \times \mu_{n}\right)=$ μ_{k}.

Fact: For all standard probability space $(\Omega, \mathcal{A}, \mu), \forall M_{1}-R V X_{1}, \ldots, \forall M_{n}-$ $R V X_{n}$, all on $\Omega, \forall k,\left(p_{k}\right)_{*}\left(\delta_{X_{1}, \ldots, X_{n}}\right)=\delta_{X_{k}}$

Fact: For all Borel $S_{1} \subseteq M 1, \ldots, S_{n} \subseteq M_{n}, \operatorname{Pr}\left[\left(X_{1} \in S_{1}\right) \& \ldots \&\left(X_{n} \in\right.\right.$ $\left.\left.S_{n}\right)\right]=\left(\operatorname{Pr}\left[X_{1} \in S_{1}\right]\right) \ldots\left(\operatorname{Pr}\left[X_{n} \in S_{n}\right]\right)$

Fact: For all standard Borel spaces $\left(P_{1}, \mathcal{D}_{1}\right), \ldots,\left(P_{n}, \mathcal{D}_{n}\right), \forall f_{1}: M_{1} \rightarrow$ $P_{1}, \ldots, \forall f_{n}: M_{n} \rightarrow P_{n}$, all Borel, $f_{1}\left(X_{1}\right), \ldots, f_{n}\left(X_{n}\right)$ are jointly independent.

Fact: $\delta_{X_{1}+\ldots+X_{n}}=\delta_{X_{1}} * \ldots * \delta_{X_{n}}$
Corollary: $\mathcal{F} \delta_{X_{1}+\ldots+X_{n}}=\left(\mathcal{F} \delta_{X_{1}}\right) \ldots\left(\mathcal{F} \delta_{X_{n}}\right)$

- Let X be a random variable. Let $F: \mathbb{R} \rightarrow[0,1]$ be the CDF of (the distribution of) X. The grade of X is $\operatorname{gr}[X]:=F(X)$.
$T B D$

Fact: If X has no values of positive probability, i.e., if, $\forall c \in \mathbb{R}, \operatorname{Pr}[X=$ $c]=0$, then $\delta[g r[X]]$ is Lebesgue measure on $[0,1]$.

- The joint distribution of X_{1}, \ldots, X_{n} is $\delta\left[X_{1}, \ldots, X_{n}\right]:=\left(X_{1}, \ldots X_{n}\right)_{*}(\mu)$, a probability measure on \mathbb{R}^{n}.
$T B D$
- The copula of X_{1}, \ldots, X_{n} is $\operatorname{cop}\left[X_{1}, \ldots, X_{n}\right]:=\delta\left[g r\left[X_{1}\right], \ldots, \operatorname{gr}\left[X_{n}\right]\right]$.
$T B D$
- $X_{1}, X_{2}, \ldots M$-RVs, \ldots (all on Ω) X_{1}, X_{2}, \ldots are iid means both X_{1}, X_{2}, \ldots are (jointly) independent and for all integers $j, k, \geq 1, \delta_{X_{j}}=\delta_{X_{k}}$
$T B D$
Definitions and Facts from Topic 3000
- Let $(\Omega, \mathcal{A}, \mu)$ be a standard probability space. Let E be an event, i.e., a measurable subset of Ω, so $E \in \overline{\mathcal{A}}$. The probability of E is defined by $\operatorname{Pr}[E]:=\bar{\mu}(E)$.
$T B D$
- Let E and F be events. The conditional probability of E given F is defined by $\operatorname{Pr}[E \mid F]:=\frac{\bar{\mu}(E \bigcap F)}{\bar{\mu}(F)}$.
$T B D$
- Let E be an event and let X be an $L^{1} \mathrm{RV}$. The conditional expectation of X given E is $E[X \mid E]:=\frac{1}{\bar{\mu}(E)} \int_{E} X d \mu$.
$T B D$
- The conditional expectation of V given \mathcal{P} is the RV $E[V \mid \mathcal{P}]: \Omega \rightarrow$ \mathbb{R} defined by $(E[V \mid \mathcal{P}])(\omega)=E\left[V \mid P_{\omega}\right]$. Here, \mathcal{P} is a finite partition of Ω.
$T B D$

Fact: Let $U:=E[V \mid \mathcal{P}]$. Then U is $<\mathcal{P}_{\sigma}>$-measurable, and, $\forall P \in<$ $\mathcal{P}>{ }_{\sigma}$ of positive measure, $E[U \mid P]=E[V \mid P]$.

- TBD

Definitions and Facts from Topic 3100

- Let \mathcal{P} and \mathcal{Q} be partitions of Ω. We say that \mathcal{P} is finer than \mathcal{Q} if: $\forall P \in \mathcal{P}, \exists Q \in \mathcal{Q}$ s.t. $P \subseteq Q$.

If the question "Which set in \mathcal{P} contained ω ?" gives enough info to answer "Which set in \mathcal{Q} contained ω ?", then we say that \mathcal{P} is finer than \mathcal{Q}.

Fact: \mathcal{P} finer than $\mathcal{Q} \Rightarrow \forall Q \in \mathcal{Q}, \exists P_{1}, \ldots, P_{k} \in \mathcal{P}$ s.t. $Q=P_{1} \sqcup \ldots \sqcup P_{k}$.
Fact: \mathcal{P} finer than \mathcal{Q} implies any \mathcal{Q}-measurable RV is \mathcal{P}-measurable.

- The Tower Law: Let V be a L^{1} RV. Let \mathcal{P} and \mathcal{Q} be finite, positive measure partitions of Ω. Assume that \mathcal{P} is finer than \mathcal{Q}. Then $E[E[V \mid \mathcal{P}] \mid \mathcal{Q}]=E[V \mid \mathcal{Q}]$.

Forcing \mathcal{P}-measurability is weaker than forcing \mathcal{Q}-measurability, so doing both is redundant.

- Let \mathcal{S} and \mathcal{T} be σ-subalgebras on Ω. We say that \mathcal{S} than \mathcal{T} if $\mathcal{T} \subseteq \mathcal{S}$.
$T B D$
- The Power Tower Law: Let V be an $L^{1} \mathrm{RV}$. Let \mathcal{S} be a σ-algebra on Ω. Then $E[E[V \mid \mathcal{S}]]=E[V]$.
$T B D$
Definitions and Facts from Topic 3200
- For all functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$, the convolution of f and g is the function $f * g$ defined by $(f * g)(x)=\int_{-\infty}^{\infty}[f(t)][g(x-t)] d t$.

This definition was used on the final exam from last year in one of the first computation problems

- $\Gamma(s):=\left[\int_{-\infty}^{\infty} z^{x} e^{-e^{x}} d x\right]_{z: \rightarrow e^{s}}$

This is the definition of the gamma function, which is used to calculate the PDF for the chi-squared distribution. There is a simpler way to define the gamma function in a practical way, as given in the two definitions below.

- For integer values of n, the result of the gamma function is given by $(n-1)$!
- For non-integer values of n, the result of the gamma function is given by $\frac{(2 n)!}{4^{n} n!} \sqrt{\pi}$. Note that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.
- $\left(*^{n} \psi\right)(x)=\frac{x^{(n / 2)-1} e^{-x / 2}}{2^{n / 2} \Gamma(n / 2)}$

This function yields the PDF for a chi-squared distribution with n degrees of freedom. Note that it relies on the above definition of the gamma function.

Fact: Let $(M, \mathcal{B}),(N, \mathcal{C}),(P, \mathcal{D})$ be Borel spaces. Let $F: M \times N \rightarrow P$ be Borel. Let $x \in M$ and let ν be a measure on N. Then $F_{*}\left(\delta_{x} \times \nu\right)=$ $(F(x, \bullet))_{*}(\nu)$.

Fact: Let $(M, \mathcal{B}),(N, \mathcal{C})$ be Borel spaces. Let $F: M \rightarrow N$ be a Borel isomorphism. Let μ be a measure on M. Let $g: M \rightarrow[0, \infty]$ be measurable. Then $F_{*}(g \mu)=\left[g \circ F^{-1}\right]\left[F_{*}(\mu)\right]$.

Fact: If f is a PDF for μ and if g is a PDF for ν then $f * g$ is a PDF for $\mu * \nu$.

Definitions and Facts from Topic 3300

- TBD

Definitions and Facts from Topic 3400

- TBD

Definitions and Facts from Topic 3500

- The exponential distribution describes the time between events that occur continuously and independently at a constant average rate.
- The CDF for the exponential distribution is as follows: $C D F_{\delta_{X}}(x):=$ $\left\{1-e^{-\alpha x}\right.$, if $x \geq 0 ; 0$, if $x \leq 0$
- The PDF for the exponential distribution is as follows: $P D F_{\delta_{X}}(x):=$ $\left\{\alpha e^{-\alpha x}\right.$, if $x>0 ; 0$, if $x<0$

Fact: X, Y independent $\Rightarrow \delta_{X+Y}=\delta_{X} * \delta_{Y}$

- TODO: Gamma, Poisson, and empirical distributions

Definitions and Facts from Topic 3600

- Fix a probability space $(\Omega, \mathcal{B}, \mu)$. For all Borel spaces $(\mathbb{T}, \mathcal{A})$, a \mathbb{T} process is a function $X: \mathbb{T} \rightarrow\{R V$ s on $\Omega\}$ s.t. $(\omega, t) \mapsto(X(t))(\omega):$ $\Omega \times \mathbb{T} \rightarrow \mathbb{R}$ is measurable.

A process is a series of random variables together in a sequence that describe the evolution of a path of some kind.

- A process is a $[0, \infty)$-process.

By default, a process is defined on the positive real numbers.

- A spacetime-process is an $(\mathbb{R} \times[0, \infty))$-process.

A process may be defined in terms of both space and time. For instance, a Brownian motion has parameters that describe both the position of a particle and a related time index.

- A process $X_{\bullet}\left(X_{t}\right.$ or $\left.X(t)\right)$ is continuous if $\forall \omega \in \Omega, t \mapsto X_{t}(\omega)$: $[0, \infty) \rightarrow \mathbb{R}$ is continuous.

Some processes are continuous, like Brownian motion, and others are not, like a Levy process.

- For any set $\mathbb{T} \subseteq \mathbb{R}$, a \mathbb{T}-filtration is a function $\mathcal{F}_{\bullet}: \mathbb{T} \rightarrow\{\sigma-$ subalgebras $\}$ s.t. $t, u \in \mathbb{T}, t \leq u \Rightarrow \mathcal{F}_{t} \subseteq \mathcal{F}_{u}$.

A filtration can be thought of a σ-algebra that becomes increasingly finer as time passes. The σ-algebra allows for the measurement of the process. If one thinks of data appearing on a screen and that data is changing, a filtration is a collection of those data.

- A RV $X: \Omega \rightarrow \mathbb{R}$ is \mathcal{S}-measurable if for all Borel $B \subseteq \mathbb{R}, X^{-1}(B) \in \mathcal{S}$. $T B D$
- X_{\bullet} is \mathcal{F}_{\bullet}-adapted means: $\forall t \in \mathbb{T}, X_{t}$ is \mathcal{F}_{t}-measurable.
$T B D$
- The filtration of X_{\bullet} is the filtration $\mathcal{F}_{\bullet}^{X}$ defined by $\mathcal{F}_{t}^{X}:=<\bigcup_{s \leq t} \mathcal{S}_{X_{s}}>_{\sigma}$.

As mentioned in the definition of filtration above, the filtration is an increasingly finer σ-algebra.

- The $\left(t_{1}, \ldots, t_{d}\right)$-marginal of $X \bullet$ is the joint distribution $\delta\left[X_{t_{1}}, \ldots, X_{t_{d}}\right]$.
$T B D$
- $X_{\bullet}=Y_{\bullet}$ in finite dimensional (f.d.) marginals, written $X_{\bullet} \stackrel{\delta}{=}$ Y_{\bullet} means: for all integers $d \geq 1, \forall t_{1}, \ldots t_{d} \in[0, \infty), \delta\left[X_{t_{1}}, \ldots, X_{t_{d}}\right]=$ $\delta\left[Y_{t_{1}}, \ldots, Y_{t_{d}}\right]$.
$T B D$

Fact: Any process is adapted to its filtration.

Various Useful Facts You Should Know

- $E[c \mathcal{A}]=c(E[\mathcal{A}])$
- $\operatorname{Var}[c \mathcal{A}]=c^{2} \operatorname{Var}[\mathcal{A}]$
- $S D[c \mathcal{A}]=|c| S D[\mathcal{A}]$
- $E[c+\mathcal{A}]=c+E[\mathcal{A}]$
- $\operatorname{Var}[c+\mathcal{A}]=\operatorname{Var}[\mathcal{A}]$
- $S D[c+\mathcal{A}]=S D[\mathcal{A}]$
- $E\left[\sum^{n} \mathcal{A}\right]=n \times E[\mathcal{A}]$
- $\operatorname{Var}\left[\sum^{n} \mathcal{A}\right]=n \times \operatorname{Var}[\mathcal{A}]$
- $S D\left[\sum^{n} \mathcal{A}\right]=\sqrt{n} \times S D[\mathcal{A}]$

Finite is to algebra as countable is to sigma algebra sigma-additive is a more "robust" form of additivity than finitely-additive??
sigma is another way to say infinite

