MATH 1271 Fall 2012, Midterm #1 Handout date: Thursday 4 October 2012

PRINT YOUR NAME:

50 LUTIONS Version B

PRINT YOUR TA'S NAME:

WHAT RECITATION SECTION ARE YOU IN?

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind. Turn off all handheld devices, including cell phones.

Show work; a correct answer, by itself, may be insufficient for credit. Arithmetic need not be simplified, unless the problem requests it.

I understand the above, and I understand that cheating has severe consequences, from a failing grade to expulsion.

SIGN YOUR NAME:

I. Multiple choice

A. (5 pts) (no partial credit) Compute $\lim_{x\to 0} \left[\frac{x^3 + 2x^2 - 4x}{\sin(8x)} \right]$ Circle one of the following answers:

- (a) 2/3
- (b) -2/3
- (c) -1/2
- (d) 1/2
- (e) NONE OF THE ABOVE

$$\frac{7x \to 0}{-4x} \xrightarrow{x \neq 0} \frac{-4}{8} = -\frac{1}{2}$$

$$|x \to 0|$$

$$-\frac{1}{2}$$

B. (5 pts) (no partial credit) Compute $\lim_{t\to 3} \left[\frac{t^2+t-12}{t-3} \right]$. Circle one of the following answers:

- (a) 3
- (b) 4
- (c) 5
- (d) 6
- (e)NONE OF THE ABOVE

$$\frac{(t-3)(t+4)}{t-3} \stackrel{t+3}{=} t+4$$

$$\downarrow t \to 3$$

C. (5 pts) (no partial credit) Compute $\lim_{x\to 0} \left[\frac{3x^4 + 2x^3}{7x(\sin^2 x)} \right]$. Circle one of the following answers:

- (a) 2/7
- (b) 0
- (c) 5/7
- (d) ∞
- (e) NONE OF THE ABOVE

$$\frac{2x \to 0}{2x^3} \xrightarrow{x \neq 0} \frac{2}{7} \xrightarrow{x \to 0} \frac{2}{7}$$

D. (5 pts) (no partial credit) Compute $\lim_{x\to-\infty}$ answers:

$$\infty \left[\frac{\sqrt{16x^6 - x}}{16x^3 + x} \right]. \text{ Circle one of the following}$$

$$? x \rightarrow - \checkmark$$

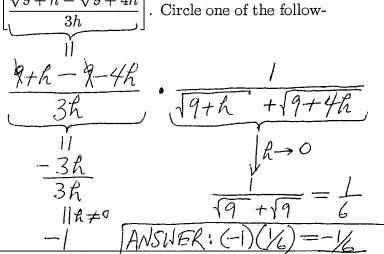
(a)
$$1/2$$

(b)
$$-1/2$$

(c)
$$1/4$$

$$(d) -1/4$$

$$\frac{\sqrt{16x^6}}{\sqrt{16x^3}} \approx \frac{-4x^8}{\sqrt{16x^3}} = -\frac{1}{4}$$


$$\sqrt{x \rightarrow -\infty}$$

$$-\frac{1}{4}$$

E. (5 pts) (no partial credit) Compute $\lim_{h\to 0} \left[\frac{\sqrt{9+h}}{2} \right]$ ing answers:

$$(b) -1/6$$

(c)
$$1/9$$

F. (5 pts) (no partial credit) Which is the intuitive definition of $\lim_{x\to 3} (g(x)) = 8$? Circle one of the following answers:

- (a) If g(x) is close to 3, then x is close to 8.
- (b) If x is close to 3, but not equal to 3, then g(x) is close to 8, but not equal to 8.
- ((c)) If x is close to 3, but not equal to 3, then g(x) is close to 8.
- (d) If g(x) is close to 8, but not equal to 8, then x is close to 3.
- (e) NONE OF THE ABOVE

II. True or false (no partial credit):
a. (5 pts) Let f(x) = |x|. Then f is continuous at every real number.

b. (5 pts) If a function f is continuous at a number a, then f is differentiable at a.

False
c. (5 pts) Let $f(x) = x^3$. Then f is a one-to-one function.

True

d. (5 pts) Let f(x) = |x|. Then the domains of f and of f' are equal.

False

e. (5 pts) For every x < 0, $\sqrt{x^6} = -x^3$.

True

THE BOTTOM OF THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE BELOW THE LINE

VERSION B

- I. A,B,C
- I. D,E,F
- II. a,b,c,d,e
- III. 1
- III. 2
- III. 3
- III. 4

III. Computations. Show work. Unless otherwise specified, answers must be exactly correct, but can be left in any form easily calculated on a standard calculator.

1. (10 pts) Find all horizontal asymptotes to

$$y = \frac{\sqrt{4x^4 + 2x + 5}}{5x^2 - 3}.$$

(NOTE: A horizontal asymptote is a line; your answers should be equations of lines, NOT numbers.)

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{\sqrt{4x^4}}{5x^2}$$

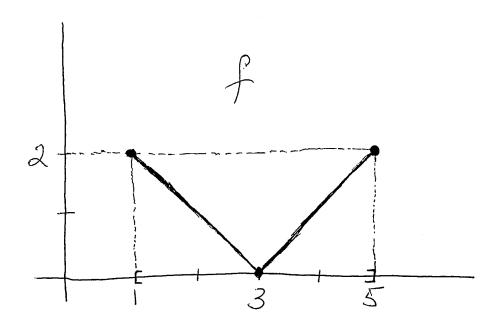
$$= \lim_{x \to \pm \infty} \frac{2x^2}{5x^2} = \frac{2}{5}$$

$$y = \frac{2}{5}$$
 is the only horizontal asymptote.

2. (15 pts) Draw a single graph showing a function $f:[1,5]\to\mathbb{R}$ with all of the following properties:

(•) Its domain is the interval [1, 5].

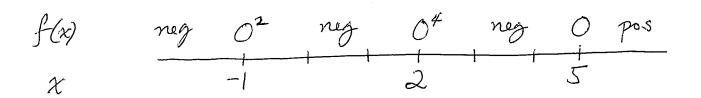
 (\bullet) It is continuous on [1,5].


(•) It is differentiable on (1,3) and on (3,5).

(•) For all $x \in (1,3)$, we have: f'(x) = -1.

(•) For all $x \in (3,5)$, we have: f'(x) = 1.

(•) It is not differentiable at 3.


 (\bullet) f(3) = 0.

3. (10 pts) Compute
$$\lim_{x \to \infty} \left[\frac{x^2 + \sin^2 x}{2x^2 + 1} \right]$$
.

$$\lim_{x \to a} f(x) = \frac{1}{2}$$

4. (10 pts) Let $f(x) = (x+1)^2(x-2)^4(x-5)$. Find all of the maximum intervals of positivity and negativity for f.

f is neg. on
$$(-a, -1)$$

neg. on $(-1, 2)$
neg. on $(2, 5)$
pos. on $(5, \infty)$