MATH 1271 Fall 2012, Midterm #2 Handout date: Thursday 8 November 2012

PRINT YOUR NAME:

SOLUTIONS Version B

PRINT YOUR TA'S NAME:

WHAT RECITATION SECTION ARE YOU IN?

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind. Turn off all handheld devices, including cell phones.

Show work; a correct answer, by itself, may be insufficient for credit. Arithmetic need not be simplified, unless the problem requests it.

I understand the above, and I understand that cheating has severe consequences, from a failing grade to expulsion.

SIGN YOUR NAME:

- I. Multiple choice
- A. (5 pts) (no partial credit) Compute $[d/dx][\sin^2(xy)]$. Circle one of the following answers:
 - $(a)2[\sin(xy)][\cos(xy)][y+xy']$
 - (b) $[\cos^2(xy)][y + xy']$
 - (c) $2[\sin(xy)][y + xy']$
 - (d) $2[\sin(xy)][\cos(y + xy')]$
 - (e) NONE OF THE ABOVE
- B. (5 pts) (no partial credit) Find the logarithmic derivative of $(2 + \sin(2x))^{\cos x}$ w.r.t. x. Circle one of the following answers:

(a)
$$(\cos x)(\ln(2+\sin(2x))) + (-\sin x)\left(\frac{2\cos(2x)}{2+\sin(2x)}\right)$$

(b)
$$(-\sin x)(\ln(2+\sin(2x))) + (\cos x)\left(\frac{2\cos(2x)}{2+\sin(2x)}\right)$$

- (c) $(\cos x)(\ln(2 + \sin(2x)))$
- (d) $(-\sin x) \left(\frac{2\cos(2x)}{2+\sin(2x)}\right)$
- (e) NONE OF THE ABOVE
- $\frac{d}{dx} \left[(\cos x) \left(\ln (Q + \sin (2x)) \right) \right]$
- C. (5 pts) (no partial credit) Find the derivative of $(2 + \sin(2x))^{\cos x}$ w.r.t. x. Circle one of the following answers:

(a)
$$[(2+\sin(2x))^{\cos x}] \left[(\cos x)(\ln(2+\sin(2x))) + (-\sin x) \left(\frac{2\cos(2x)}{2+\sin(2x)} \right) \right]$$

(b)
$$[(2 + \sin(2x))^{\cos x}]$$
 $[(-\sin x)(\ln(2 + \sin(2x))) + (\cos x)(\frac{2\cos(2x)}{2 + \sin(2x)})]$

(c)
$$[(2 + \sin(2x))^{\cos x}][(\cos x)(\ln(2 + \sin(2x)))]$$

(d)
$$[(2 + \sin(2x))^{\cos x}] \left[(-\sin x) \left(\frac{2\cos(2x)}{2 + \sin(2x)} \right) \right]$$

(e) NONE OF THE ABOVE

- (c) $[1,\infty)$ (d) $(-\infty, 1]$
- (e) NONE OF THE ABOVE

E. (5 pts) (no partial credit) Compute the derivative of $\ln(x^{\arctan x})$, with respect to x, on the interval x > 0. Circle one of the following answers:

(a)
$$\frac{x^{1/(1+x^2)}}{x^{\arctan x}}$$

(b)
$$\frac{1}{x^{\arctan x}}$$

(c)
$$\frac{1}{x^{\sec^2 x}}$$

(d)
$$x^{\sec^2 x}$$

 $\frac{d}{dx} \left[(\arctan x) (\ln x) \right]$ 11

 $\frac{\ln x}{1 \cdot x^2} + \frac{\arctan x}{x}$

 $-(x^2+4x+3)=-(x+3)(x+1)$

F. (5 pts) (no partial credit) Suppose $f''(x) = -x^2 - 4x - 3$. At most one of the following statements is true. If one is, circle it. Otherwise, circle "NONE OF THE ABOVE".

- (a) f is concave up on $(-\infty, 1]$, down on [1, 3] and up on $[3, \infty)$.
- (b) f is concave down on $(-\infty, 1]$, up on [1, 3] and down on $[3, \infty)$.
- (c) f is concave up on $(-\infty, -3]$, down on [-3, -1] and up on $[-1, \infty)$.
- ((d)) f is concave down on $(-\infty, -3]$, up on [-3, -1] and down on $[-1, \infty)$.
- (e) NONE OF THE ABOVE

II. True or false (no partial credit):

a. (5 pts) Assume that $\lim_{x\to 0} [f(x)] = 0 = \lim_{x\to 0} [g(x)]$. Assume also that $\lim_{x\to 0} \left[\frac{f'(x)}{g'(x)}\right]$ does not exist. Then $\lim_{x\to 0} \left[\frac{f(x)}{g(x)}\right]$ does not exist.

b. (5 pts) Assume that $\lim_{x\to 3} [f(x)] = 0 = \lim_{x\to 3} [g(x)]$. Assume also that $\lim_{x\to 3} \frac{f'(x)}{g'(x)} = 7$. Then $\lim_{x\to 3} \frac{f(x)}{g(x)} = 7$.

True

c. (5 pts) If f' > 0 on an interval I, then f is increasing on I.

True

d. (5 pts) If f is increasing on an interval I, then f' > 0 on I.

False

e. (5 pts) If f and g are differentiable at a number a, then fg + f + g is differentiable at a.

THE BOTTOM OF THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE BELOW THE LINE

VERSION B

- I. A,B,C
- I. D,E,F
- II. a,b,c,d,e
- III. 1,2.
- III. 3.
- III. 4.
- III. 5.

III. Computations. Show work. Unless otherwise specified, answers must be exactly correct, but can be left in any form easily calculated on a standard calculator.

1. (5 pts) Compute
$$\frac{d}{dx} \left[\frac{e^{x^4} - 8}{5 + \csc(x^2)} \right]$$
. (Here e^{x^4} means $e^{(x^4)}$.)

$$\frac{[5 + \csc(x^{2})][4x^{3}e^{x^{4}}] - [e^{x^{4}} - 8][-\csc(x^{2})][\cot(x^{2})][2x]}{[5 + \csc(x^{2})]^{2}}$$

2. (5 pts) Compute
$$\frac{d}{dx} \left[(5 - \sin x)^{7 \arccos x} \right]$$
.

$$\left[(5 - \sin x)^{7} \arccos x \right] \left[\frac{d}{dx} \left[(7 \arccos x) (\ln(8 - \sin x)) \right] \right]$$

$$\left[\left(5-\sin x\right)^{7}\arccos x\right]\left[\left(\frac{-7}{\sqrt{1-\chi^{2}}}\right)\left(\ln \left(5-\sin x\right)+\left(7\arccos x\right)\left(\frac{-\cos x}{5-\sin x}\right)\right]$$

3. (10 pts) Find an equation for the tangent line to $x^3 + xy + y^3 = 11$ at (1, 2).

$$3x^2 + y + xy' + 3y^2y' = 0$$

7

$$y' = \frac{-3x^2 - y}{x + 3y^2}$$

1 2

$$slope = \frac{-3\cdot 1 - 2}{1 + 3\cdot 4} = \frac{-5}{13}$$

ogn:
$$y-2 = -\frac{5}{13}(x-1)$$

4. (15 pts) Compute $\lim_{x\to 0} ((\cos x) - (\sin x))^{3/x}$.

$$O_{x\to 0}^{\sin(3/x)} \left(\ln\left((\cos x) - (\sin x) \right) \right)$$

$$\frac{3\left(\ln\left(\left(\cos x\right)-\left(\sin x\right)\right)\right)}{x}$$

$$\frac{11110}{3(\cos x) - (\cos x)}$$

$$\frac{3(\cos x) - (\sin x)}{(\cos x)}$$

$$1$$

$$\frac{3(\frac{-0-1}{1-0})}{1}$$

5. (10 pts) Find the global maximum and minimum value of $f(x) = x^3 - 3x^2 + 3x + 9$ on the interval $-1 \le x \le 1$.

$$f(x) = 3x^{2} - 6x + 3$$

$$= 3(x^{2} - 2x + 1)$$

$$= 3(x - 1)^{2}$$

$$f$$
 is increasing on $R = (-\infty, \infty)$

On
$$-1 \le x \le 1$$

f attains global min at
$$x=-1$$
,
with global min value $f(-1)=-1-3-3+9$

$$=-4+6=2, \text{ and}$$

fattains global max at
$$x=1$$

with global max value $f(1)=1-3+3+9$
 $=1+9=10$.