MATH 1271 Fall 2013, Midterm #1 Handout date: Thursday 10 October 2013

PRINT YOUR NAME:

PRINT YOUR TA'S NAME:

WHAT RECITATION SECTION ARE YOU IN?

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind. Turn off all handheld devices, including cell phones.

SOLUTIONS Version C

Show work; a correct answer, by itself, may be insufficient for credit. Arithmetic need not be simplified, unless the problem requests it.

I understand the above, and I understand that cheating has severe consequences, from a failing grade to expulsion.

SIGN YOUR NAME:

I. Multiple choice

A. (5 pts) (no partial credit) Compute $[d/dx][3x^4 + 4x^{1/2} - \pi]$. Circle one of the following answers:

(a) $4x^3 + 2x^{-1/2}$

 $12x^3 + 2x^{-1/2} - 0$

- (b)12 $x^3 + 2x^{-1/2}$
- (c) $12x^3 + 2x^{1/2} \pi$
- (d) $3x^3 + 2x^{1/2} \pi$
- (e) NONE OF THE ABOVE

B. (5 pts) (no partial credit) Compute $[d/dx][(\sin x)(\tan x)]$. Circle one of the following answers:

(a) $(\cos x)(\sec x)(\tan x)$

(cos x)(tan x)+(sin x)(sec2x)

- (b) $(\cos x)(\sec^2 x)$
- (c) $(\cos x)(\tan x) (\sin x)(\sec^2 x)$
- (d) $(\cos x)(\tan x) + (\sin x)(\sec x)(\tan x)$
- (e)NONE OF THE ABOVE

C. (5 pts) (no partial credit) Compute $[d/dx][2e^x + 5\sqrt{2}]$. Circle one of the following answers:

(a) $2e^x + 5$

 $2e^{x} + 0$

- (b)2 e^x
- (c) $2xe^{x-1} + 5$
- (d) $2xe^{x-1}$
- (e) NONE OF THE ABOVE

D. (5 pts) (no partial credit) Which is the intuitive definition of $\lim_{x\to 8^-} (H(x)) = 4$? Circle one of the following answers:

- (a) If H(x) is close to 8, then x is close to 4.
- (b)If x is close to 8, but less than 8, then H(x) is close to 4.
- (c) If H(x) is close to 4, then x is close to 8, but greater than 8.
- (d) If x is close to 8, but not equal to 8, then H(x) is close to 4, but not equal to 4.
- (e) NONE OF THE ABOVE

E. (5 pts) (no partial credit) Compute $\lim_{x\to-\infty}\left[\frac{x^4+2x^3-4x^2}{2x^4-7x^2}\right]$. Circle one of the following answers:

- (a) -4/7
- (b) 4/7
- (c) -1/2
- (d)1/2
- (e) NONE OF THE ABOVE

F. (5 pts) (no partial credit) What is the largest number x such that $|x-3| \le 0.002$? Circle one of the following answers:

3+0,002

- (a) -2.998
- (b) 3
- (c)3.002
- (d) 2.998
- (e) NONE OF THE ABOVE

- II. True or false (no partial credit):
- a. (5 pts) If f and g are continuous at 3, then $f^2 + g^2$ MUST be continuous at 3 as well.

b. (5 pts)
$$\frac{d}{dx} (3[f(x)] - 2[g(x)]) = 3[f'(x)] - 2[g'(x)].$$

c. (5 pts)
$$\frac{d}{dx} \left[\frac{\sin x}{x^2} \right] = \frac{\cos x}{2x}$$
.

d. (5 pts) If f is a polynomial of degree 7, then f'' is a polynomial of degree 5.

e. (5 pts)
$$\lim_{x\to 0} \frac{(\cos x) - 1}{x} = 1$$
.

THE BOTTOM OF THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE BELOW THE LINE

VERSION C

I. A,B,C

I. D,E,F

II. a,b,c,d,e

III. 1

III. 2

III. 3

III. 4

III. Computations. Show work. Unless otherwise specified, answers must be exactly correct, but can be left in any form easily calculated on a standard calculator.

1. (10 pts) Compute

$$\frac{d}{dx} \left[\frac{(x^5 + 3x)(\cot x)}{2 + e^x} \right].$$

$$\frac{[2+e^{x}][(5x^{4}+3)(ctx)+(x^{5}+3x)(-csc^{2}x)]-[(x^{5}+3x)(ctx)][e^{x}]}{[2+e^{x}]^{2}}$$

2. (15 pts) Compute
$$\lim_{n\to\infty} \left(1 - \frac{0.045}{n}\right)^n$$
.

$$\lim_{\chi\to\infty} \left[\left(1 + \frac{1}{\chi}\right)^{(-0.045)\chi} \right]$$

3. (10 pts) Find all horizontal asymptotes to

$$y = \frac{\sqrt{x^4 + 4x - 7}}{3x^2 + 5} = \frac{1}{2} \left(\chi \right)$$

(NOTE: A horizontal asymptote is a line; your answers should be equations of lines, NOT numbers.)

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{\sqrt{x^4}}{3x^2} = \lim_{x \to \pm \infty} \frac{|x^2|}{3x^2}$$

$$= \lim_{x \to \pm \infty} \frac{x^2}{3x^2} = \frac{1}{3}$$

$$y=\frac{1}{3}$$

4. (10 pts) Suppose f(0) = 5 and f'(0) = 4. Suppose g(0) = 2 and g'(0) = 3. Let h = fg. Compute h(0) and h'(0).

$$h = fg$$

$$h' = f'g + fg'$$

$$h(0) = 5 \cdot 2 = 10$$

$$h(0) = 4 \cdot 2 + 5 \cdot 3 = 8 + 15 = 23$$