MATH 1271 Spring 2012, Midterm #2 Handout date: Thursday 29 March 2012

PRINT YOUR NAME:

PRINT YOUR TA'S NAME:

WHAT RECITATION SECTION ARE YOU IN?

Solutions Version B

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind. Turn off all handheld devices, including cell phones.

Show work; a correct answer, by itself, may be insufficient for credit. Arithmetic need not be simplified, unless the problem requests it.

I understand the above, and I understand that cheating has severe consequences, from a failing grade to expulsion.

SIGN YOUR NAME:

I. Multiple choice

$$-(x^2-4x+3)=-(x-1)(x-3)$$

A. (5 pts) (no partial credit) Suppose $f''(x) = -x^2 + 4x - 3$. At most one of the following statements is true. If one is, circle it. Otherwise, circle "NONE OF THE ABOVE".

- (a) f is concave up on $(-\infty, 1]$, down on [1, 3] and up on $[3, \infty)$.
- (b) f is concave down on $(-\infty, 1]$, up on [1, 3] and down on $[3, \infty)$.
 - (c) f is concave up on $(-\infty, -3]$, down on [-3, -1] and up on $[-1, \infty)$.
 - (d) f is concave down on $(-\infty, -3]$, up on [-3, -1] and down on $[-1, \infty)$.
- (e) NONE OF THE ABOVE

B. (5 pts) (no partial credit) Find the logarithmic derivative of $x^2 + 7x - 8$ w.r.t. x.

(a)
$$\frac{x^2 + 7x - 8}{2x + 7}$$

- (b) $(\ln(x^2)) + 7(\ln x) (\ln 8)$
- (c) $\ln(2x+7)$

$$\underbrace{\text{(d)}}_{x^2 + 7x - 8}$$

(e) NONE OF THE ABOVE

C. (5 pts) (no partial credit) Find an equation of the tangent line to $4x^2y - 2y^3 = 2$ at the point (1,1).

(a)
$$y - 1 = x - 1$$

(b)
$$y - 1 = 2(x - 1)$$

(c)
$$y-1=3(x-1)$$

$$(d)y - 1 = 4(x - 1)$$

(e) NONE OF THE ABOVE

$$8xy + 4x^2y' - 6y^2y' = 0$$

$$y' = \frac{-8xy}{4x^2 - 6y^2}$$

$$slope = \frac{-8}{4-6} = \frac{-8}{-2} = 4$$

D.	(5 pts)	(no	partial	credit)	Find t	the l	logarithmic	derivative	of	$(2+x^4)$	$\cos x$	w.r.t.	x.
ν.	(o pos)	(110	harmar	creary	Tillu	0110	ogariumiic	acrivative	OI.	(2) 1 2	,	** . 1 . 0 .	

(a)
$$(\cos x)(\ln(2+x^4)) + (-\sin x)(4x^3/(2+x^4))$$

(b)
$$(-\sin x)(4x^3/(2+x^4))$$

$$(c)$$
 $(-\sin x)(\ln(2+x^4)) + (\cos x)(4x^3/(2+x^4))$

(d)
$$(\cos x)(\ln(2+x^4))$$

E. (5 pts) (no partial credit) Find the derivative of $(2+x^4)^{\cos x}$ w.r.t. x.

(a)
$$[(2+x^4)^{\cos x}][(\cos x)(\ln(2+x^4)) + (-\sin x)(4x^3/(2+x^4))]$$

(b)
$$[(2+x^4)^{\cos x}][(-\sin x)(4x^3/(2+x^4))]$$

(c)
$$[(2+x^4)^{\cos x}][(-\sin x)(\ln(2+x^4)) + (\cos x)(4x^3/(2+x^4))]$$

(d)
$$[(2+x^4)^{\cos x}][(\cos x)(\ln(2+x^4))]$$

(e) NONE OF THE ABOVE

F. (5 pts) (no partial credit) Compute $[d/dx][\sin(\cos(e^x+3))]$.

(a)
$$\cos(\cos(e^x+3))$$

(b)
$$[\cos(\cos(e^x + 3))][\cos(e^x + 3)][e^x + 3]$$

(c)
$$[\cos(\cos(e^x+3))][-\sin(e^x+3)][e^x+3]$$

 $\left[\cos\left(\cos\left(e^{x}+3\right)\right)\right]\left[-\sin\left(e^{x}+3\right)\right]\left[e^{x}\right]$

·									
II. True or false (no partial credit):									
a. (5 pts) If $f'(7) = 0$ and $f''(7) > 0$, then f has a local maximum at 7.									
V F									
b. (5 pts) Assume that $\lim_{x\to a} [f(x)] = 0$ and that $\lim_{x\to a} [g(x)] = 0$. Assume also that $\lim_{x\to a} \frac{f'(x)}{g'(x)}$									
does not exist. Then $\lim_{x\to a} \frac{f(x)}{g(x)}$ does not exist.									
F									
c. (5 pts) Every local extremum occurs at a critical number.									
T									
d. (5 pts) If f is concave up on an interval I , then $f'' > 0$ on I .									
F									
e. (5 pts) If two functions have the same derivative, then they are equal.									
F									
THE BOTTOM OF THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE BELOW THE LINE									
VERSION B									
I. A,B,C									
I. D,E,F									
II. a,b,c,d,e									
III. 1ab.									
III. 2.									
III. 3,4.									
III. 5.									

III. Computations. Show work. Unless otherwise specified, answers must be exactly correct, but can be left in any form easily calculated on a standard calculator.

1. a. (5 pts) Compute
$$\frac{d}{dx} \left[\frac{2x^3 - 8}{6 + (\arctan(2x))} \right]$$
.

$$\frac{\left[6+(\arctan{(2x)})\right]\left[6x^{2}\right]-\left[2x^{3}-8\right]\left[\frac{1}{1+(2x)^{2}}\right]\left[2\right]}{\left[6+\arctan{(2x)}\right]^{2}}$$

b. (5 pts) Compute
$$\frac{d}{dx} [(4 - \sin x)^x]$$
.

$$\left[\left(4 - \sin x \right)^{x} \right] \left[\frac{d}{dx} \left[x \left(\ln \left(4 - \sin x \right) \right) \right] \right]$$

$$\left[\left(4-\sin x\right)^{x}\right]\left[\left(\ln \left(4-\sin x\right)\right)+\chi\left(\frac{-\cos \chi}{4-\sin x}\right)\right]$$

2. (10 pts) Using implicit differentiation, find y' = dy/dx, assuming that $(x - y^2)^5 = x$.

$$5(x-y^{2})^{4}(1-2yy') = 1$$

$$[5(x-y^{2})^{4}] - [10y(x-y^{2})^{4}]y' = 1$$

$$y' = \frac{1-5(x-y^{2})^{4}}{-10y(x-y^{2})^{4}}$$

3. (5 pts) Let $f(x) = 4x + 4x^5$. Then f is a one-to-one function. Let $g := f^{-1}$. Then f(1) = 8, so g(8) = 1. Compute g'(8).

$$g'(8) = \frac{1}{f'(1)} = \frac{1}{[4+20x^4]_{x:\to 1}} = \frac{1}{24}$$

4. (10 pts) Find the maximal intervals of concavity for $f(x) = -3x^5 + 20x^4 + 4x - 8$. For each interval, state clearly whether f is concave up or concave down on that interval.

$$f'(x) = -15x^{4} + 80x^{3} + 4$$
$$f''(x) = -60x^{3} + 240x^{2}$$
$$= -60x^{2}(x-4)$$

$$f$$
 is concare up on $(-\infty, 4]$
 f is concare down on $[4, \infty)$