MATH 1271 Spring 2013, Midterm #2 Handout date: Thursday 4 April 2013

PRINT YOUR NAME:

SOLUTIONS Version B

PRINT YOUR TA'S NAME:

WHAT RECITATION SECTION ARE YOU IN?

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind. Turn off all handheld devices, including cell phones.

Show work; a correct answer, by itself, may be insufficient for credit. Arithmetic need not be simplified, unless the problem requests it.

I understand the above, and I understand that cheating has severe consequences, from a failing grade to expulsion.

SIGN YOUR NAME:

I. Multiple choice

A. (5 pts) (no partial credit) The Quotient Rule says that (f/g)' is equal to what? Circle one of the following answers:

- (a) f'/g'
- (b) g'/f'
- (c) $(fg' gf')/g^2$
- $(d)(gf'-fg')/g^2$
- (e) NONE OF THE ABOVE

B. (5 pts) (no partial credit) Compute $[d/dx][\sin^2(xy)]$. Circle one of the following answers:

- (a) $2[\sin(xy)][\cos(xy)]$
- (b) $[\cos^2(xy)][y + xy']$
- $(c)2[\sin(xy)][\cos(xy)][y+xy']$
- (d) $2[\sin(xy)][\cos(y+xy')]$
- (e) NONE OF THE ABOVE

C. (5 pts) (no partial credit) Compute $\lim_{x\to\infty} (2x^2 + 4x - 3)e^{-x}$. Circle one of the following answers:

- (a) 0
- (b) -3
- (c) ∞
- (d) 2
- (e) NONE OF THE ABOVE

$$\lim_{x \to \infty} \frac{2x^2 + 4x - 3}{e^x}$$

D. (5 pts) (no partial credit) Let f be a function such that $f'(x) = 3e^{4x-4}$. Suppose, also, that f(1) = 5. Which of the following is an equation of the tangent line to the graph of f at (1,5). Circle one of the following answers:

(a)
$$y = 1 + 3(x - 5)$$

(b)
$$y = 5 + 3(x - 1)$$

(c)
$$y = 1 + 3e^{4x-4}(x-5)$$

(d)
$$y = 5 + 3e^{4x-4}(x-1)$$

slope =
$$f(1) = 3e^{4\cdot 1 - 4} = 3$$

$$y-5 = 3(x-1)$$

$$y = 5 + 3(x - 1)$$

E. (5 pts) (no partial credit) Suppose $f'(x) = (x-1)^8(x-2)^6(x-3)^5$. Which of the following is a maximal interval of <u>increase</u> for f? Circle one of the following answers:

- (a) $[2,\infty)$
- (b) $(-2, \infty)$
- (c) $[1, \infty)$
- (d) $(-\infty, 1]$
- (e)NONE OF THE ABOVE

F. (5 pts) (no partial credit) Compute $\frac{d}{dx} [\ln |(2x+1)(3x-4)|]$. Circle one of the following answers:

(a)
$$\frac{2}{2x+1} + \frac{3}{3x-4}$$

(b)
$$\left| \frac{2}{2x+1} + \frac{3}{3x-4} \right|$$

(c)
$$\frac{6}{(2x+1)(3x+4)}$$

(d)
$$\left| \frac{6}{(2x+1)(3x+4)} \right|$$

(e) NONE OF THE ABOVE

II. True or false (no partial credit):

a. (5 pts) Let f and g be any two functions such that $\lim_{x\to a}[f(x)]=\infty$ and $\lim_{x\to a}[g(x)]=\infty$. Then $\lim_{x\to a}[(f(x))-(g(x))]=0$.

b. (5 pts) Let g be any function such that $\lim_{x\to\infty}[g(x)]=\infty$. Then $\lim_{x\to\infty}[(1/x)^{g(x)}]=0$.

True
$$(1/\omega = 0^{+})$$
 and $(0^{+})^{\omega} = 0^{+}$

c. (5 pts) If f is increasing on an interval I, then f' > 0 on I.

d. (5 pts) Let f and g be any two functions such that $\lim_{x\to 5} f(x) = 0$ and $\lim_{x\to 5} g(x) = \infty$. Then $\lim_{x\to 5} \frac{f(x)}{g(x)} = 0$.

True
$$\frac{Q}{Q} = Q^{1}$$

e. (5 pts) Let u be any expression of x. Then $(d/dx)(e^u) = e^u(du/dx)$.

True chain rule

THE BOTTOM OF THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE BELOW THE LINE

VERSION B

I. A,B,C

I. D,E,F

II. a,b,c,d,e

III. 1,2.

III. 3.

III. 4.

III. 5. a,b,c

III. Computations. Show work. Unless otherwise specified, answers must be exactly correct, but can be left in any form easily calculated on a standard calculator.

1. (5 pts) Compute
$$\frac{d}{dx} \left[\frac{e^{-x^3}}{4 + \tan(x^2)} \right]$$
. (Here e^{-x^3} means $e^{\left(-x^3\right)}$.)

$$\frac{[4 + \tan(x^2)][e^{-x^3}][-3x^2] - [e^{-x^3}][\sec^2(x^2)][2x]}{[4 + \tan(x^2)]^2}$$

2. (5 pts) Compute
$$\frac{d}{dx} \left[(2 + \sin x)^{3-x} \right]$$
.

$$\left[\left(2+\sin x\right)^{3-x}\right]\left[\frac{d}{dx}\left[\left(3-x\right)\left(\ln \left(2+\sin x\right)\right)\right]\right]$$

$$\left[\left(2+\sin x\right)^{3-x}\right]\left(-1)\left(\ln \left(2+\sin x\right)\right)+\left(3-x\right)\left(\frac{\cos x}{2+\sin x}\right)\right]$$

3. (10 pts) Find an equation for the tangent line to $5x^3 - 2xy + y^2 = 5x + y$ at (1,3).

$$15x^2 - 2y - 2xy' + 2yy' = 5 + y'$$

1 3 1 m 3 m m

$$15 - 6 - 2m + 6m = 5 + m$$

$$9 + 4m = 5 + m$$

$$3m = -4$$

$$m = -\frac{4}{3}$$

$$y-3 = -\frac{4}{3}(x-1)$$

4. (10 pts) Compute $\lim_{x\to 0} (e^x - 4\sin x)^{5/x}$.

$$\lim_{x\to 0} (5/x) \left(\ln \left(e^x - 4\sin x \right) \right)$$

$$O_{x\to 0}^{\lim} \frac{5\left(\ln\left(e^{x} - 4\sin x\right)\right)}{x}$$

$$|| || H = \frac{e^{x} - 4 \cos x}{2^{x} + 4 \cos x}|$$

$$\lim_{x \to 0} \frac{5(\frac{e^{x} - 4\cos x}{e^{x} - 4\sin x})}{1}$$

$$\frac{5(\frac{1-4}{1-6})}{1} = e^{-15}$$

- 5. Let $y = x^4$. Then $\triangle y = px^3(\triangle x) + qx^2(\triangle x)^2 + rx(\triangle x)^3 + s(\triangle x)^4$, for some real numbers p, q, r, s.
- a. (5 pts) Compute p, q, r and s.

b. (5 pts) Assuming $\triangle x \neq 0$, compute $\frac{\triangle y}{\triangle x}$.

$$4\chi^3 + 6\chi^2(\Delta \chi) + 4\chi(\Delta \chi)^2 + (\Delta \chi)^3$$

c. (5 pts) Compute $\lim_{\triangle x \to 0} \frac{\triangle y}{\triangle x}$.

$$4\chi^3$$