MATH 1271 Spring 2014, Midterm #1 Handout date: Thursday 27 February 2014 Instructor: Scot Adams

PRINT YOUR NAME:

SOLUTIONS Version A

PRINT YOUR X.500 ID:

PRINT YOUR TA'S NAME:

WHAT RECITATION SECTION ARE YOU IN?

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind. Turn off all handheld devices, including cell phones.

Show work; a correct answer, by itself, may be insufficient for credit. Arithmetic need not be simplified, unless the problem requests it.

I. Multiple choice

A. (5 pts) (no partial credit) Which is the intuitive definition of $\lim_{x\to-\infty} (f(x)) = \infty$? Circle one of the following answers:

- (a) If f(x) is very positive, then x is very negative.
- (b) If f(x) is very negative, then x is very positive.
- (c) If x is very positive, then f(x) is very negative.
- (d)If x is very negative, then f(x) is very positive.
- (e) NONE OF THE ABOVE

B. (5 pts) (no partial credit) Compute $\left[\frac{d}{dx}\right] \left[\frac{e^x}{x^4 - 8x}\right]$. Circle one of the following answers:

$$(a) \frac{(x^4 - 8x)(e^x) - (e^x)(4x^3 - 8)}{(x^4 - 8x)^2}$$

(b)
$$\frac{(e^x)(4x^3-8)-(x^4-8x)(e^x)}{(x^4-8x)^2}$$

(c)
$$\frac{e^x}{4x^3 - 8}$$

(d)
$$\frac{xe^{x-1}}{4x^3-8}$$

(e) NONE OF THE ABOVE

C. (5 pts) (no partial credit) Compute $\triangle(x^3-x^2)$. Circle one of the following answers:

(a)
$$3x^2 - 2x$$

$$(b)$$
 $3x^2(\triangle x) + 3x(\triangle x)^2 + (\triangle x)^3 - 2x(\triangle x) - (\triangle x)^2$

$$(x)^2$$
 | 3 3 |

(c)
$$3x^2 + 3x(\triangle x) + (\triangle x)^2 - 2x - (\triangle x)$$

(d)
$$(3x^2 - 2x) (\triangle x)$$

$$\Delta(x^3) = 3x^2(\Delta x) + 3x(\Delta x)^2 + (\Delta x)^2$$

$$\Delta(x^2) = 2x(\Delta x) + (\Delta x)^2$$

D. (5 pts) (no partial credit) Compute $[d/dx][2e^3 + 5\sin x]$. Circle one of the following answers:

(a)
$$6e^2 + 5\cos x$$

(b)
$$6e^3 + 5\cos x$$

- (c) $5 \cos x$
- (d) $-5\cos x$

(e) NONE OF THE ABOVE

E. (5 pts) (no partial credit) Let $g(x) = [8-3x]\left[\frac{x-5}{x-5}\right]$. What is the largest $\delta > 0$ such that $0 < |x-5| < \delta \implies |(g(x)) + 7| < 0.6$? Circle one of the following answers:

- (a) 0.3
- (b) -0.3
- (c) 1.8
- (d) -0.2

 $\frac{\pm 0.6}{-3} = \mp 0.2$

$$S = 0.2$$

(e)NONE OF THE ABOVE

F. (5 pts) (no partial credit) Let $f(t) = \cot^2 t$. Compute $f'(\pi/4)$. (Hint: $f(t) = (\cot t)(\cot t)$.) Circle one of the following answers:

(a)
$$-\sqrt{2}/2$$

(c)
$$-1$$

$$f'(t) = (-csc^{2}t)(cst t) + (cst t)(-csc^{2}t)$$

$$= -2(cst t)(csc^{2}t)$$

$$f'(\pi/4) = -2(1)(\frac{1}{1/2}) = -4$$

(e) NONE OF THE ABOVE

- II. True or false (no partial credit):
- a. (5 pts) Let f and g be any two functions such that f'(4) = 10 and g'(5) = 20. Then (f+g)'(9) = 30.

b. (5 pts)
$$\frac{d}{dx} \left[\frac{\sin x}{x^2} \right] = \frac{\cos x}{2x}$$
.

c. (5 pts)
$$\lim_{x \to 0} \frac{1 - \cos x}{x} = 1.$$

$$\frac{1-\cos x}{x} \underset{\chi \to 0}{\sim} \frac{\chi^2/2}{\chi} = \frac{\chi}{2} \xrightarrow{\chi} 0$$

d. (5 pts) If P is any polynomial of degree 3 and Q is any polynomial of degree 4, then

$$\lim_{x \to -\infty} \left[\frac{\dot{P}(x)}{Q(x)} \right] = 0.$$

e. (5 pts) If f and g are both differentiable at 3, then $f^2 - fg$ is also differentiable at 3.

THE BOTTOM OF THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE BELOW THE LINE

VERSION A

I. A,B,C

I. D,E,F

II. a,b,c,d,e

III. 1

III. 2

III. 3ab

III. 4abc

III. Computations. Show work. Unless otherwise specified, answers must be exactly correct, but can be left in any form easily calculated on a standard calculator.

1. (10 pts) Compute $\underbrace{\frac{d}{dx} \left[\frac{(2x^2 - 8x)(\sec x)}{5 - e^x} \right]}_{\text{II}}.$

 $[5-e^{x}][(4x-8)(\sec x)+(2x^{2}-8x)(\sec x)(\tan x)]-[(2x^{2}-8x)(\sec x)][-e^{x}]$ $[5-e^{x}]^{2}$

2. (10 pts) Compute
$$\lim_{x\to 0}$$

$$\frac{1}{10} \left[\frac{(\sin(2x))(\cos(3x))(3x^5 - 2x^4 - 4x^2)}{(\sec(4x))(\tan^3 x)} \right].$$

$$\frac{(2x)(1)(-4x^2)}{(\frac{1}{1})(\frac{x}{1})^3}$$

$$\frac{11}{-8x^3}$$

$$\frac{-8x^3}{x^3}$$

$$||x\neq 0|$$

$$-8$$

$$\downarrow^{\chi \to 0}$$

- 3. Let $f(x) = 3x^5 5x^3 + e^7$.
- a. (5 pts) Find all $a \in \mathbb{R}$ such that the graph of f has a horizontal tangent line at (a, f(a)).

$$f'(x) = 15x^{4} - 15x^{2} + 0$$

$$= 15x^{2}(x^{2} - 1)$$

$$= 15x^{2}(x + 1)(x - 1)$$

$$(a=0)$$
 or $(a=1)$

b. (5 pts) Find all the maximal intervals on which f' is negative.

$$f'$$
 is negative on $(-1,0)$ and on $(0,1)$.

4. Let
$$y = x^3 + 2x$$
. Then $\triangle y = ax^2(\triangle x) + bx(\triangle x)^2 + c(\triangle x)^3 + k(\triangle x)$, for some real numbers a, b, c, k .

a. (5 pts) Compute
$$a$$
, b , c and k .

$$\Delta(x^3) = 3x^2(\Delta x) + 3x(\Delta x)^2 + (\Delta x)^3$$

$$\Delta y = 3x^{2}(\Delta x) + 3x(\Delta x)^{2} + (\Delta x)^{3} + 2(\Delta x)$$

$$a \qquad b \qquad c \qquad k$$

$$a \qquad b \qquad c \qquad k$$

$$a \qquad 1 \qquad 1$$

$$3 \qquad 3 \qquad 1 \qquad 2$$

b. (5 pts) Assuming
$$\Delta x \neq 0$$
, compute $\frac{\Delta y}{\Delta x}$.

$$\iint \Delta x \neq 0$$

$$3x^2 + 3x(\Delta x) + (\Delta x)^2 + 2$$

c. (5 pts) Compute
$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$
.

$$11$$

$$3\chi^2 + 0 + 0 + 2 = 3\chi^2 + 2$$