MATH 1271 Spring 2014, Midterm #2 Handout date: Thursday 17 April 2014

Instructor: Scot Adams

PRINT YOUR NAME:

SOLUTIONS Version D

PRINT YOUR X.500 ID:

PRINT YOUR TA'S NAME:

WHAT RECITATION SECTION ARE YOU IN?

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind. Turn off all handheld devices, including cell phones.

Show work; a correct answer, by itself, may be insufficient for credit. Arithmetic need not be simplified, unless the problem requests it.

I. Multiple choice

A. (5 pts) (no partial credit) Let $f(x) = e^{2x} + 3x$. What is the iterative formula of Newton's method used to solve f(x) = 0? Circle one of the following answers:

(a)
$$x_{n+1} = x_n - \frac{e^{2x_n} + 3x_n}{e^{2x_n} + 3}$$

(b)
$$x_{n+1} = x_n - \frac{2e^{2x_n} + 3}{e^{2x_n} + 3x_n}$$

$$(c)x_{n+1} = x_n - \frac{e^{2x_n} + 3x_n}{2e^{2x_n} + 3}$$

(d)
$$x_{n+1} = x_n - \frac{e^{2x_n} + 3}{e^{2x_n} + 3x_n}$$

(e) NONE OF THE ABOVE

$$\chi_{n+1} = \chi_n - \frac{e^{2\chi_n} + 3\chi_n}{2e^{2\chi_n} + 3}$$

B. (5 pts) (no partial credit) Let $y = x^2 + x$. Compute dy, evaluated at x = 10, dx = 0.1. Circle one of the following answers:

- (a) 1.2
- (b)2.1
- (c) 1.22
- (d) 2.11
- (e) NONE OF THE ABOVE

$$(2x+1) dx$$

$$(2\cdot10+1)(0.1) = (21)(0.1)$$

$$= 2.1$$

C. (5 pts) (no partial credit) Find the derivative of $(2+x^4)^{\sin x}$ w.r.t. x. Circle one of the following answers:

- (a) $[(2+x^4)^{\sin x}][(\sin x)(\ln(2+x^4))]$
- (b) $[(2+x^4)^{\sin x}][(\cos x)(4x^3/(2+x^4))]$
- (c) $[(2+x^4)^{\sin x}][(\sin x)(\ln(2+x^4)) + (\cos x)(4x^3/(2+x^4))]$
- $(d)[(2+x^4)^{\sin x}][(\cos x)(\ln(2+x^4))+(\sin x)(4x^3/(2+x^4))]$
 - (e) NONE OF THE ABOVE

LD:
$$\left[\left(2+\chi^{4}\right)\sin\chi\right]\left[\frac{d}{d\chi}\left[\left(\sin\chi\right)\left(\ln\left(2+\chi^{4}\right)\right)\right]\right]$$

D. (5 pts) (no partial credit) Let $f(x) = \cot^2(5x^4 + 1)$. Compute $\int_5^5 f(x) dx$. Circle one of the following answers:

- (a) 20
- (b) 6
- (c) 2
- (d)0
- (e) NONE OF THE ABOVE

E. (5 pts) (no partial credit) Suppose $f''(x) = (x-7)^2(x-8)^4$. At most one of the following statements is true. If one is, circle it. Otherwise, circle "NONE OF THE ABOVE".

- (a) f is concave down on $(-\infty, 7]$ and up on $[7, \infty)$].
- (b) f is concave up on $(-\infty, 7]$ and down on $[7, \infty)$].
- (c) f is concave up on $(-\infty, 7]$, down on [7, 8] and up on $[8, \infty)$.
- (d) f is concave down on $(-\infty, 7]$, up on [7, 8] and down on $[8, \infty)$.

F. (5 pts) (no partial credit) Let $f(x) = e^{3x-4}$. Recall that $M_2S_1^5f$ denotes the midpoint Riemann sum, from 1 to 5, of f, with two subintervals. Which of these is equal to $M_2S_1^5f$? Circle one of the following answers:

(a)
$$2(e^2 + e^8)$$

(b)
$$e^2 + e^8$$

(c)
$$2(e^5 + e^{11})$$

(d)
$$e^5 + e^{11}$$

$$f(2) = e^{6-4} = e^2$$

$$f(4) = e^{12-4} = e^{8}$$

II. True or false	(no	part	ial crec	lit):						
a. (5 pts) Let f						f'(4) = 0) and j	f''(4) < 0	. Assume	that

f'' is defined on \mathbb{R} . Then f has a global maximum at 4.

Jf Fal

b. (5 pts) Let $f, g : \mathbb{R} \to \mathbb{R}$ be any two differentiable functions such that, for all $x \in \mathbb{R}$, f'(x) = g'(x). Then f - g is a constant.

MVT

True

c. (5 pts) Assume that $\lim_{x\to a} [f(x)] = 0 = \lim_{x\to a} [g(x)]$. Assume also that $\lim_{x\to a} \frac{f'(x)}{g'(x)} = -\infty$.

Then $\lim_{x \to a} \frac{f(x)}{g(x)} \equiv -\infty$.

True

d. (5 pts) $\frac{d}{dx} \left[\int_{1}^{x} \sin(e^{t}) dt \right] = \cos(e^{x}).$ Fig. (e^{x})

False

e. (5 pts) If f is continuous on [a, b], then $\int_a^b (f(x)) dx = \lim_{n \to \infty} [R_n S_a^b f].$

Definition of So (f(x)) da

/rue

THE BOTTOM OF THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE BELOW THE LINE

VERSION D

I. A,B,C

I. D,E,F

II. a,b,c,d,e

III. 1.

III. 2.

III. 3.

III. 4.

III. Computations. Show work. Unless otherwise specified, answers must be exactly correct, but can be left in any form easily calculated on a standard calculator.

1. (10 pts) Find an antiderivative w.r.t. x of $\cos^2(2x+3)$. (Hint: $\cos(2\theta) = -1 + 2(\cos^2\theta)$.)

$$1 + \left[\cos(2\theta)\right] = 2\left(\cos^2\theta\right)$$

$$\frac{1}{2} + \frac{1}{2}\left[\cos(2\theta)\right] = \cos^2\theta$$

$$\theta: \longrightarrow 2x + 3$$

$$\frac{1}{2} + \frac{1}{2}\left[\cos(4x + 6)\right] = \cos^2(2x + 3)$$

Antidorivative:

$$\frac{1}{2}x + \frac{1}{2}\left[\frac{\sin(4x+6)}{4}\right]$$

2. (10 pts) Let
$$f(x) = \int_{2+5x}^{1+e^x} \sqrt{t^3+1} dt$$
. Compute $f'(0)$.

=-12

$$f(x) \stackrel{FTC}{=} (H(1+e^{x})) - (H(2+5x))$$

$$f'(x) \stackrel{CR}{=} (H'(1+e^{x}))(e^{x}) - (H'(2+5x))(5)$$

$$f'(0) = (H'(2))(1) - (H'(2))(5)$$

$$= (H'(2))(1-5) = (H'(2))(-4)$$

$$= (18+1)(-4) = (19)(-4)$$

3. (15 pts) We are asked to design a large cup in the shape of a cylinder. The cup is to have an open top, and must contain 2π cubic feet of volume inside. Let r be the radius of the top of the cup. On the interval r > 0, find the choice of r (in feet) that minimizes the surface area, A, of the cup. (HINT: Our local precalculus expert shows us the formula that relates A to r. It is $A = \pi r^2 + (4\pi/r)$.)

$$\frac{dA}{dn} = 2\pi n - \frac{4\pi}{n^2} = \frac{2\pi n^3 - 4\pi}{n^2}$$

$$=\frac{2\pi\left(\hbar^3-2\right)}{\hbar^2}$$

12

dA/dr neg O pos

0

On 1 > 0, A attains a global minimum

only at $n=\sqrt[3]{2}$ ft.

4. (10 pts) A conical pile of sand is growing. Its height is always equal to the radius, r, of its base. Assume that its volume is always growing at a rate of 5π cubic feet per minute. Find the rate of growth in r (in feet per minute) at the moment when the volume is 9π cubic feet. (HINT: According to our local precalculus expert, its volume, V, is given by $V = \pi r^3/3$.)

to

$$*:=[t:-t_o]$$

$$9\pi = V_{*} = \pi N_{*}^{3} / 3$$

$$27\pi = \pi N_{*}^{3}$$

$$3 = n_{*}$$

$$5\pi = V = \pi (\beta R^{2} i) / \beta = \pi R^{2} i$$

$$5\pi = \pi N_{*}^{2} i_{*} = \pi (9) (?)$$

$$? = \frac{5\pi}{9\pi} = \frac{5}{9} ft / min$$