CALCULUS Continuity OLD2

- $\frac{0210-1}{\text{old}}$. a. At which numbers is the function f, shown above, discontinuous?
 - b. For each of the numbers, given in Part a, where f is discontinuous, state whether or not f is continuous from the LEFT at that number.
 - c. For each of the numbers, given in Part a, where f is discontinuous, state whether or not f is continuous from the RIGHT at that number.

$$0210-2$$
. Display the graph of a function f

s.t.
$$\lim_{x \to -1^{-}} f(x) = -3$$
, $\lim_{x \to -1^{+}} f(x) = 1$,

and s.t.
$$f(-1) = 1,$$

and s.t.
$$\lim_{x \to 1} f(x) = -\infty$$
, $f(1) = 2$,

and s.t.
$$\lim_{x\to 2} f(x) = 1, \qquad f(2) = 0,$$

and s.t. $\lim_{x\to-\infty} f(x) = -1$, $\lim_{x\to\infty} f(x) = -4$.

O210-3. Let $f(t) = (4t^{2/3} + 3)^{85}$.

Using the properties of limits, show that f is continuous at 7.

O210-4. Let
$$f(x) = \begin{cases} 2x + 5, & \text{if } x < -1 \\ 3, & \text{if } x = -1 \\ x^2 + 4, & \text{if } x > -1. \end{cases}$$
 a. Does $\lim_{x \to -1} f(x)$ exist? If so, compute it.

b. Is f continuous from the left at -1?

Let
$$g(x) = \begin{cases} \cos(2x), & \text{if } x < 0 \\ 1, & \text{if } x = 0 \\ x^2 + 1, & \text{if } x > 0. \end{cases}$$

a. Does $\lim_{x\to 0} g(x)$ exist? If so, compute it.

b. Is q continuous at 0?

Let
$$g(x) = \begin{cases} \cos(2x), & \text{if } x < 0 \\ 1, & \text{if } x = 0 \\ x^2 + 1, & \text{if } x > 0. \end{cases}$$

a. Does $\lim_{x\to -1} g(x)$ exist? If so, compute it.

b. Is q continuous at -1?

0210-7. Let
$$f(x) = \sqrt[3]{x}$$
.

a. Is f continuous at 0?

b. Is f continuous on $[0,\infty)$?

c. Is f continuous?

$$0210-8$$
. Let $g(x) = 1/\sqrt[3]{x}$.

a. Is g continuous at 0?

b. Is q continuous on $(0,\infty)$?

c. Is q continuous?

0210-9. Compute
$$\lim_{x\to 27} \frac{x+\sqrt[3]{x}}{(x-20)^2-2x+6}$$
.

0210-10. Let
$$f(x) = \begin{cases} x^2 + 3, & \text{if } x < 2 \\ 2x + 2, & \text{if } 2 \le x < 3 \\ 8[\cos(x - 3)], & \text{if } 3 \le x. \end{cases}$$
a. At which numbers is the function f discontinuous?
b. For each of the numbers, given in Part a,

c. For each of the numbers, given in Part a, where f is discontinuous, state whether or not f is continuous from the RIGHT

where f is discontinuous, state whether

at that number.

at that number.

or not f is continuous from the LEFT

- a. At which numbers is the function *g* discontinuous?
- b. For each of the numbers, given in Part a, where g is discontinuous, state whether or not the discontinuity is removable.

0210-12. Find a number a s.t.

$$f(x) = \begin{cases} ae^x, & \text{if } x \le 0 \\ ax^3 + 3a + 8, & \text{if } 0 < x \end{cases}$$

is continuous at x = 0.

$$0210-13. \text{ Let } h(s) = \frac{s^2 + 5s - 6}{s - 1}.$$

Find a function $p: \mathbb{R} \to \mathbb{R}$ such that p is continuous at 1 and such that, $\forall s \in \mathbb{R} \setminus \{1\}, \ p(s) = h(s).$

0210-14.

Using the Intermediate Value Theorem, show that $x^3 + 2x - 8 = 0$ has a solution x = c that satisfies -2 < c < 2.

0210-15.

Using the Intermediate Value Theorem, show that $4e^x + \cos x = x + 6$ has a sol'n x = c that satisfies -2 < c < 9.