CALCULUS Implicit differentiation OLD2

- O430-1.Let an expression y of x be given, implicitly, by the formula $xy 4x 7x^4 = 5$.
 - a. Find dy/dx by implicit differentiation.
- b. Solve for y as an explicit expression of x.
- c. Differentiate your answer to Part b, writing dy/dx as an explicit expression of x.
- d. Substitute your answer for Part b into every y appearing in your answer to Part a, writing dy/dx as an explicit expression of x.
- e. Verify that your answers to Part c and Part d are the same.

- O430-2.Let an expression y of x be given, implicitly, by the formula $x^5 + y^5 = 1$.
 - a. Find dy/dx by implicit differentiation.
- b. Solve for y as an explicit expression of x.
- c. Differentiate your answer to Part b, writing dy/dx as an explicit expression of x.
- d. Substitute your answer for Part b into every y appearing in your answer to Part a, writing dy/dx as an explicit expression of x.
- e. Verify that your answers to Part c and Part d are the same.

O430-3. Let an expression y of x be given, implicitly, by the formula $xe^y - \tan y + 2e^x \cos y = 2.$ Find dy/dx by implicit differentiation.

0430-4. Let an expression y of x be given, implicitly, by the formula $\cos y = 3x - y - 2$. Find dy/dx by implicit differentiation.

0430-5. Let an expression y of x be given, implicitly, by the formula $x^4 + y^4 = 17$. Find an equation of the tangent line to the graph of this equation

at the point (2,1).

0430-6. Let an expression y of x be given, implicitly, by the formula $y^2 = 6x^4 - 2x^2.$ Find an equation of the tangent line to the graph of this equation at the point (-1, -2).

O430-7. Let an expression y of x be given, implicitly, by the formula $3x^5 - y^5 + xy = 8.$ Find d^2y/dx^2 by implicit differentiation.

O430-8. Let an expression y of x be given, implicitly, by the formula $2\sqrt{2}x^2+y^5=6+xy.$ Find d^2y/dx^2 by implicit differentiation.

0430-9. For every $a \in \mathbb{R}$, for every b > 0, let G_a be graph of the equation $y = ax^7$ and let H_b be graph of the equation $x^2 + 7y^2 = b$.

a. Let p be the point (1,1), which lies

both on G_1 and on H_8 .

Show that the tangent lines to G_1 and H_8 at p are perpendicular.

b. Let a and b be any two real numbers, with b>0. Let q be any point which lies

both on G_a and on H_b .

Show that the tangent lines to G_a and H_b at q are perpendicular.

Challenge problem (not assigned):

For every $a, b \in \mathbb{R}$, let G_a be graph of x - 2y = 2axy and let H_b be graph of $x^3 + 2y^3 = b$.

a. Let p be the point (2,1), which lies both on G_0 and on H_{10} . Show that the tangent lines to G_0 and H_{10} at p are perpendicular.

b. Let a and b be any two real numbers. Let q be any point which lies both on G_a and on H_b . Show that the tangent lines to G_a and H_b

at q are perpendicular.

8