## CALCULUS Newton's method OLD2

O530-1. We wish to solve  $2x^3 + x - 3 = 0$ . Starting with an initial guess of  $x_1 = 1$ , compute the next two guesses,  $x_2$  and  $x_3$ , to

at least four decimals, using Newton's method.

O530-2. We wish to solve  $2x^3 + x - 4 = 0$ . Starting with an initial guess of  $x_1 = 1$ , compute the next two guesses,  $x_2$  and  $x_3$ , to at least four decimals, using Newton's method.

Starting with an initial guess of  $x_1 = 1$ , compute the next two guesses,  $x_2$  and  $x_3$ , to at least four decimals, using Newton's method.

0530-3. We wish to solve  $x^4 - 5 = 0$ .

0530-4. We wish to solve  $2x^5 + x - 3 = 0$ .

Starting with an initial guess of  $x_1 = 1$ , compute the next two guesses,  $x_2$  and  $x_3$ , to at least four decimals, using Newton's method.

O530-5. We wish to solve  $x^2 - 9 = 0$ . Starting with an initial guess of  $x_1 = -1$ ,

compute the next two guesses,  $x_2$  and  $x_3$ , to at least four decimals, using Newton's method.

0530-6. Using Newton's method, calculate  $\sqrt[3]{9}$ , to five decimal places.

0530-7. Find the unique solution to  $4x = \cos x$ , to five decimal places.

0530-8. Find a solution to  $\tan x = 4x$ , to five decimal places, by applying Newton's method to  $f(x) = 4x - (\tan x)$ , with  $x_1 = 1.5$ .

0530-9. We wish to solve 
$$\frac{\tau}{1+t^2} = 0$$
.

Let  $t_1 := \sqrt{3}/3$ . Starting with this initial guess  $t_1$ , compute the next six guesses,  $t_2, \ldots, t_7$ , using Newton's method. Draw a picture, to illustrate what is happening.