CALCULUS Linear approximation OLD2

O540-1. Find the linearization of
$$f(x) = 5x^3 - 2x$$
 at $x = 3$.

That is, find m and a s.t. the linear function L(x) = a + m(x - 3) has the same 1-jet at x = 3 as does f(x).

That is, find m and a s.t. the linear function L(x) = a + m(x - 3)satisfies: L(3) = f(3) and L'(3) = f'(3)

satisfies: L(3) = f(3) and L'(3) = f'(3).

O540-2. Find the linearization of
$$f(x) = \tan x$$
 at $x = \pi/4$.

That is, find m and a s.t. the linear function $L(x) = a + m(x - (\pi/4))$ has the same 1-jet at $x = \pi/4$ as does f(x).

That is, find m and a s.t. the linear function $L(x) = a + m(x - (\pi/4))$ satisfies: $L(\pi/4) = f(\pi/4)$

and $L'(\pi/4) = f'(\pi/4)$.

O540-3. Let
$$y = \frac{e^x \cos x}{2x^2 + 3x - 5}$$
. Compute $\triangle y$ and dy .

$$\frac{0540-4. \text{ Let } w = \frac{u+4}{\sin(2u+8)}.$$

Compute $\triangle w$ and dw.

0540-5. Let
$$z = \frac{e^{3h^2 + 2h}}{\cos(h+5)}$$
.

- a. Compute $[\triangle z]_{h:\to 0,\triangle h:\to 0.0002}$.
- b. Compute $[dz]_{h:\to 0, dh:\to 0.0002}$.

$\frac{0540}{0102}$ -6.a. Compute $(3.0002)^7$.

b. Approx. $(3.0002)^7$ by differentials.

c. Let L(x) be the linearization of $f(x) = x^7$ at x = 3. Compute L(3.0002).

O540-7. Let
$$\theta$$
 be the number of radians in 59.9°. Approximate $\cos \theta$ by differentials.

0540-8. Approx. $e^{0.004}$ by differentials.

- 0540-9. We need to paint a ball whose radius is 10 meters.
 - The coat of paint is to be 0.001 meters thick, so, after painting, the radius will be 10.001 meters.
 - a. Let $V = \frac{4}{3}\pi r^3$. Compute $\triangle V$ and dV.
 - b. Using $\triangle V$, compute the exact volume of paint that will be needed.
 - c. Using dV, estimate the volume of paint that will be needed.
 - d. Compute 0.001 times the surface area of a ball of radius 10 meters.

0540-10. A square based pyramid whose sides are equilateral triangles is called a J_1 (Johnson₁) solid; its edges all have the same length. If that length is s, then its volume is $\frac{\sqrt{2}}{6}s^3$.

Pharaoh asks us to build a pyramid in the shape of a J_1 solid, whose edge length is 500 ± 1 feet.

Up to some error, its volume will be $\frac{\sqrt{2}}{6}(500)^3$ cubic feet.

Using differentials, estimate that error.