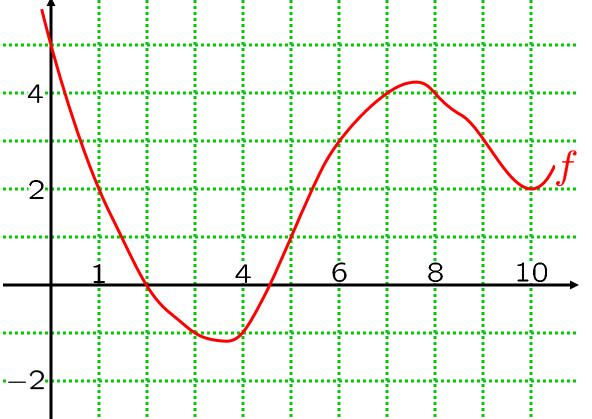
CALCULUS Definite integration and Riemann sum problems OLD2

- 0590-1. Let $f(x) = 5 5x^2$.
 - a. Compute $L_3S_{-1}^1f$. Sketch f over [-1,1] and add, into your sketch, the three rectangles represented by $L_3S_{-1}^1f$.
 - b. Compute $M_3S_{-1}^1f$. Sketch f over [-1,1] and add, into your sketch, the three rectangles represented by $M_3S_{-1}^1f$.
 - c. Compute $R_3S_{-1}^1f$. Sketch f over [-1,1] and add, into your sketch, the three rectangles represented by $R_3S_{-1}^1f$.


- 0590-2. Let $f(x) = e^x + 4$.
 - a. Compute $L_3S_0^3f$ to three decimal places.
 - b. Compute $M_3S_0^3f$ to three decimal places.
 - c. Compute $R_3S_0^3f$ to three decimal places.
- 0590-3. Let $f(x) = \sin^2 x$.
 - a. Compute $L_4S_0^{\pi}f$ to three decimal places.
 - b. Compute $M_4S_0^{\pi}f$ to three decimal places.
 - c. Compute $R_4S_0^{\pi}f$ to three decimal places.

0590-4. A car's acceleration is positive from time 0 to time 18 seconds, and its velocity at various times is given in the table below.

time (secs)	0	3	6	9	12	15	18
velocity (ft/sec)	0	30	50	65	75	80	82

Find upper and lower estimates for the distance traveled by the car over these 18 seconds.

0590-5. The gph of a function f appears below.

Estimate
$$\int_0^{10} f(x) dx$$
 by computing (a) $L_5 S_0^{10} f$, (b) $M_5 S_0^{10} f$

(a)
$$L_5 S_0^{10} f$$
, (b) $M_5 S_0^{10} f$ and (c) $R_5 S_0^{10} f$.

O590-6. Express the area under $y=e^{-x^2/2}$ from x=-1 to x=3 as a limit of midpoint Riemann sums. (Don't evaluate the limit.)

0590-7. Express the area under
$$y = \sqrt{x^3 + x} + 9$$
 from $x = 2$ to $x = 4$ as a limit of left endpoint Riemann sums. (Don't evaluate the limit.)

O590-8. Express the area under $y = \cos(x^3 + x)$ from x = -3 to x = 5 as a limit of right endpt Riemann sums. (Don't evaluate the limit.)

O590-9. Express
$$\int_4^6 \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx$$
 as a limit of midpoint Riemann sums. (Don't evaluate the limit.)

0590-10. Let
$$f(x) = x^3 - x$$
.

a. Write $R_n S_0^2 f$ as a rational expression in n (i.e., as one polynomial in n divided by another).

b. Compute $\lim_{n\to\infty} R_n S_0^2 f$.

0590-11. The limit

$$\lim_{n \to \infty} \begin{bmatrix} \frac{9}{n} & \sum_{j=0}^{n-1} \left(e^{-\cos(7+j(9/n))} \right) \end{bmatrix}$$

represents the area under y = f(x)from x = a to x = b, for some choice of f(x), a and b.

a. Find f(x), a and b.

b. Express the limit as a definite integral.

0590-12. The limit

$$\lim_{n \to \infty} \left[\frac{5}{n} \sum_{j=1}^{n} \left(\sin \left(e^{-2+j(5/n)} \right) \right) \right]$$

represents the area under y = f(x)from x = a to x = b, for some choice of f(x), a and b.

a. Find f(x), a and b.

b. Express the limit as a definite integral.

0590-13. Let
$$f(x) = 2 + \sqrt{9 - x^2}$$
.

a. Sketch the graph of y = f(x).

b. Compute $\int_{-3}^{3} f(x) dx$, by interpreting this integral as an area.