

CALCULUS
Volume by cylindrical shells:
Problems
OLD2

O750-1. Using the shell method, find the volume in a ball of radius 37, following the diagram shown below.



0750-2. We create a napkin holder by drilling a cylindrical hole of radius 12 through the middle of a ball of radius 37, as shown below. Using the shell method, find its volume.



## 0750-3. Let R be the region bounded by

$$y = (x-1)^2 \left(x - \frac{3}{2}\right)^2$$
 and  $y = \frac{1}{4}$ .

- a. Sketch R.
  - b. Using whatever method you prefer, set up an integral to compute the volume of the solid obtained by rotating R about the x-axis. Do not evalute the integral.
  - c. Using whatever method you prefer, set up an integral to compute the volume of the solid obtained by rotating R about the y-axis. Do not evalute the integral.
- d. Using whatever method you prefer, set up an integral to compute the volume of the solid obtained by rotating R about the line  $x = \frac{1}{3}$ . Do not evalute the integral.

- O750-4. Let R be the region bounded by  $x=1+e^{-y^2}$ , x=0, y=0 and y=2.
  - a. Sketch R.
  - b. Using whatever method you prefer, find the volume of the solid obtained by rotating R about the x-axis.

- O750-5. Let R be the region bounded by  $x=y^2+y, \ x=0 \ \text{and} \ y=2.$  a. Sketch R.
  - b. Using whatever method you prefer, find the volume of the solid obtained by rotating R about the line x=-1.

0750-6. Let R be the region bounded by  $x = \sin y$ , x = 0,  $y = \pi/4$  and  $y = 3\pi/4$ .

Set up, but do not evaluate, an integral that yields the volume of the solid obtained by rotating R about the line  $y = 3\pi/2$ .

0750-7. Describe the solid of revolution whose volume is given by

Whose volume is given by

$$2\pi \int_{1}^{3} [x+7] \left[ \left( e^{4x} \right) - (\cos(\pi x)) \right] dx.$$
 Do not evaluate this integral.

 $2\pi \int_{1}^{3} x \left[ \left( e^{4x} \right) - \left( \cos(\pi x) \right) \right] dx.$ 

6