CALCULUS The Mean Value Theorem NEVV

- 0460-1. Let $f(x) = x^2 2x 3$.
- a. Check that f satisfies the conditions of Rolle's Theorem on the interval [-1,3]. That is, check
 - (i) that f is continuous on [-1,3], (ii) that f is differentiable on (-1,3) and (iii) that f(-1) = f(3).
- b. Find all solutions to the equation in the conclusion of Rolle's Th'm for f on [-1,3]. That is, find all $c \in (-1,3)$ s.t. f'(c) = 0.

0460-2. Let
$$f(x) = x^2 + x - 3$$
.

a. Check that f satisfies the conditions of the MVT on the interval [-1,3]. That is, check

(i) that f is continuous on [-1,3] and (ii) that f is differentiable on (-1,3).

conclusion of the MVT for f on [-1,3].

b. Find all solutions to the equation in the

That is, find all
$$c \in (-1,3)$$
 s.t.
$$f'(c) = \frac{[f(3)] - [f(-1)]}{3 - (-1)}.$$

- 0460-3. Let f(x) = 7 + |x-5|.
 - a. Show that f is continuous on [2,8].
 - b. Show that f(2) = f(8).
 - c. Show that the conclusion of Rolle's Th'm, for f on [2,8], fails. That is, show that there is no $c \in (2,8)$ s.t. f'(c) = 0.
 - d. Explain why this does not contradict Rolle's Theorem.

- 0460-4. Let f(x) = x + |x-5|.
 - a. Show that f is continuous on [2,8].
 - b. Show that the conclusion of the MVT, for f on [2,8], fails. That is, show that there is no $c \in (2,8)$ s.t.

$$f'(c) = \frac{[f(8)] - [f(2)]}{8 - 2}.$$

c. Explain why this does not contradict the MVT.

- a. Show that f is differentiable on (2,8).
- b. Show that the conclusion of the MVT, for f on [2,8], fails. That is, show that there is no $c \in (2,8)$ s.t.

$$f'(c) = \frac{[f(8)] - [f(2)]}{8 - 2}.$$

c. Explain why this does not contradict the MVT.

O460-6. Show that $3x + \cos(2x) = 100$ has exactly one real solution.

0460-7. Let c be any constant.

Show that $x^3 + x + c = 0$ has at most one real solution on \mathbb{R} .

O460-8. At noon on some day, a certain car is at the 200 mile marker on some road. The speed limit on the road is 55 mph. A driver drives the car for seven hours, obeying the speed limit.

Let f(t) denote the position of the car t hours after noon; then f(0) = 200

and $\forall t \in [0,7], \quad f'(t) \leq 55.$

With these constraints, what is the largest possible value for f(7)?