CALCULUS Linear approximation NEVV

O540-1. Find the linearization of
$$f(x) = 2x^3 + 8x$$
 at $x = 4$.

That is, find m and a s.t. the linear function L(x) = a + m(x - 4) has the same 1-jet at x = 4 as does f(x).

That is, find m and a s.t. the linear function L(x) = a + m(x - 4) satisfies: L(4) = f(4) and L'(4) = f'(4).

O540-2. Find the linearization of
$$f(x) = \sin^2 x$$
 at $x = \pi/3$.

That is, find m and a s.t. the linear function $L(x) = a + m(x - (\pi/3))$ has the same 1-jet at $x = \pi/3$ as does f(x).

That is, find
$$m$$
 and a s.t. the linear function
$$L(x) = a + m(x - (\pi/3))$$
 satisfies:
$$L(\pi/3) = f(\pi/3)$$

and $L'(\pi/3) = f'(\pi/3)$.

0540-3. Let
$$y = \frac{x^2 \tan x}{3x}$$
.

Compute $\triangle y$ and dy.

0540-4. Let
$$q = \frac{v - e^2}{\tan(v + 1)}$$
.

Compute $\triangle q$ and dq.

0540-5. Let
$$z = \frac{e^{3t^3 - \pi t}}{\sec(2t)}$$
.

a. Compute $[\triangle z]_{t:\to 0, \triangle t:\to 0.0002}$.

b. Compute
$$[dz]_{t:\to 0, dt:\to 0.0002}$$
.

$\frac{0540}{1000}$ -6.a. Compute $(2.999)^7$.

b. Approx. $(2.999)^7$ by differentials.

c. Let L(x) be the linearization of $f(x) = x^7$ at x = 3. Compute L(2.999).

O540-7. Let
$$\theta$$
 be the number of radians in 45.2°. Approximate $\sec^2\theta$ by differentials.

5

- 0540-9. We need to paint a cube whose side length is 5 meters.
 - The coat of paint is to be 0.003 meters thick, so, after painting, the sides will have length 5.006 meters.
 - a. Let $V = s^3$. Compute $\triangle V$ and dV.
 - b. Using $\triangle V$, compute the exact volume of paint that will be needed.
 - c. Using dV, estimate the volume of paint that will be needed.
 - d. Compute 0.003 times the surface area of a cube of side length 5 meters.

0540-10. The Borg collective seeks to design a cube that measures 2000 ± 1 meters on a side.

Up to some error, its volume will be 2000³ cubic meters.

Using differentials, estimate that error.