CALCULUS Definite integration and Riemann sum problems NEW

0590-1. Let $f(x) = 2 + 2x^2$.

a. Compute $L_4S_{-2}^2f$. Sketch f over [-2,2] and add, into your sketch, the four rectangles represented by $L_4S_{-2}^2f$.

b. Compute $M_4S_{-2}^2f$. Sketch f over [-2,2] and add, into your sketch, the four rectangles represented by $M_4S_{-2}^2f$.

c. Compute $R_4S_{-2}^2f$. Sketch f over [-2,2] and add, into your sketch, the four rectangles represented by $R_4S_{-2}^2f$.

- 0590-2. Let $f(x) = e^x + 6$.
 - a. Compute $L_2S_0^8f$ to three decimal places.
 - b. Compute $M_2S_0^8f$ to three decimal places.
 - c. Compute $R_2S_0^8f$ to three decimal places.
- 0590-3. Let $f(x) = \sin^2 x$. a. Compute $L_3 S_0^{2\pi} f$ to three decimal places.
 - b. Compute $M_3 S_0^{2\pi} f$ to three decimal places.
 - c. Compute $R_3S_0^{2\pi}f$ to three decimal places.

0590-4. A car's acceleration is positive from time 0 to time 24 seconds, and its velocity at various times is given in the table below.

time (secs)	0	4	8	12	16	20	24
velocity (ft/sec)	0	40	56	68	77	81	83

Find upper and lower estimates for the distance traveled by the car over these 24 seconds.

0590-5. The gph of a function f appears below.

Estimate
$$\int_0^{10} f(x) dx$$
 by computing (a) $L_5 S_0^{10} f$, (b) $M_5 S_0^{10} f$

(a)
$$L_5 S_0^{10} f$$
, (b) $M_5 S_0^{10} f$ and (c) $R_5 S_0^{10} f$.

O590-6. Express the area under $y = e^{-x^2/5}$ from x = -2 to x = 0 as a limit of midpoint Riemann sums. (Don't evaluate the limit.)

0590-7. Express the area under
$$y=\sqrt{x^3+x+5}$$
 from $x=1$ to $x=4$ as a limit of left endpoint Riemann sums. (Don't evaluate the limit.)

O590-8. Express the area under $y = \cos(x^4 - x)$ from x = 0 to x = 5 as a limit of right endpt Riemann sums. (Don't evaluate the limit.)

0590-9. Express $\int_2^4 \frac{e^{-x^2}}{\sqrt{\pi}} dx$ as a limit of midpoint Riemann sums. (Don't evaluate the limit.)

$$0590-10$$
. Let $f(x) = 2x^3$.

a. Write $R_n S_0^2 f$ as a rational expression in n (i.e., as one polynomial in n divided by another).

b. Compute $\lim_{n\to\infty} R_n S_0^2 f$.

0590-11. The limit

$$\lim_{n\to\infty} \left[\frac{3}{n} \sum_{j=1}^{n} \left(\cos^2 \left(-4 + j(3/n) \right) \right) \right]$$

represents the area under y = f(x)from x = a to x = b, for some choice of f(x), a and b.

- a. Find f(x), a and b.
- b. Express the limit as a definite integral.

0590-12. The limit

$$\lim_{n \to \infty} \left[\frac{5}{n} \sum_{j=0}^{n-1} \left(\cos \left(\frac{1}{3+j(5/n)} \right) \right) \right]$$

represents the area under y=f(x) from x=a to x=b, for some choice of f(x), a and b.

- a. Find f(x), a and b.
- b. Express the limit as a definite integral.

0590-13. Let
$$f(x) = 2 - \sqrt{4 - x^2}$$
.

a. Sketch the graph of y = f(x).

b. Compute $\int_{-2}^{2} f(x) dx$, by interpreting this integral as an area.