CALCULUS

The limit game and the exact definition of a limit NEVV

O150-1. For the function g graphed below, what is the largest number δ such that

$$|s-4| < \delta \implies |(g(s)) - 5| < 0.6$$
 ?

0150-2. Let f(x) = -3x + 4.

Show a graph of y = f(x) that includes the points (1,1), (2,-2) and (3,-5).

Find the largest number δ such that $|x-2|<\delta \Rightarrow |(f(x))-(-2)|<0.6.$

0150-3. Let
$$g(x) = [-3x + 4] \left[\frac{x-2}{x-2} \right]$$
.

Show a graph of $y = g(x)$ that includes the points $(1,1)$ and $(3,-5)$.

Find the largest number δ such that $0 < |x-2| < \delta \Rightarrow |(g(x)) - (-2)| < 0.6$.

0150-4. In shop class, you are asked to build a disk-shaped sheet of metal of area 16π square inches.

The area can be slightly off, but must be between $16\pi - (0.1)$ and $16\pi + (0.1)$ inches².

Say you have access to a machine that will punch out a perfect disk, and the diameter (in inches) is controlled by a dial.

How close to 8 must you set the dial to get the area to be in the specified range?

Give your answer to five decimal places.

0150-5. Prove that $\lim_{x\to 0} (2x^2/x) = 0$.

Your writeup should read:

Given
$$\varepsilon > 0$$
.

Let
$$\delta = \cdots$$
.

Assume
$$0 < |x - 0| < \delta$$
.

Then
$$x \neq 0$$
 and $|2x - 0| < 2\delta$.

Then
$$|(2x^2/x) - 0| < 2\delta$$
. ----penultimate sentence

Then
$$|(2x^2/x) - 0| < \varepsilon$$
. -----last sentence

All you need do is fill in the ellipsis
$$(\cdots)$$
 with a carefully chosen expression of ε .

Hint: The last sentence in the writeup clearly follows from the penultimate sentence if $2\delta = \varepsilon$.