CALCULUS Implicit differentiation NEVV

O430-1.Let an expression y of x be given, implicitly, by the formula $x^2y + \pi x - \sqrt{2}y = 3$.

b. Solve for y as an explicit expression of x.

a. Find dy/dx by implicit differentiation.

c. Differentiate your answer to Part b,

writing dy/dx as an explicit expression of x.

d. Substitute your answer for Part b into every y appearing in your answer to Part a,

writing dy/dx as an explicit expression of x.

e. Verify that your answers to Part c and Part d are the same.

- O430-2.Let an expression y of x be given, implicitly, by the formula $x^4 + y^3 = 1$.
 - a. Find dy/dx by implicit differentiation.
- b. Solve for y as an explicit expression of x.
- c. Differentiate your answer to Part b, writing dy/dx as an explicit expression of x.
- d. Substitute your answer for Part b into every y appearing in your answer to Part a, writing dy/dx as an explicit expression of x.
- e. Verify that your answers to Part c and Part d are the same.

O430-3. Let an expression y of x be given, implicitly, by the formula $ye^x - \sqrt{2}e^2x + e^y \csc x = 2.$ Find dy/dx by implicit differentiation.

O430-4. Let an expression y of x be given, implicitly, by the formula $\cos^2 y = -x + \sqrt[3]{7}y$. Find dy/dx by implicit differentiation.

O430-5. Let an expression y of x be given, implicitly, by the formula $x^4 + y^3 = 15.$ Find an equation of the tangent line to the graph of this equation

at the point (-2, -1).

0430-6. Let an expression y of x be given, implicitly, by the formula $3y^2 = x^6 - \sqrt[3]{16}x.$ Find an equation of the tangent line to the graph of this equation at the point $(\sqrt[3]{4}, 2)$.

O430-7. Let an expression y of x be given, implicitly, by the formula $-x^4 + \sqrt[7]{2}y^3 + e^2y = 2.$ Find d^2y/dx^2 by implicit differentiation.

O430-8. Let an expression
$$y$$
 of x be given, implicitly, by the formula
$$-x^7 + 4\pi y^3 = 8 + xy.$$
 Find d^2y/dx^2 by implicit differentiation.

O430-9. For every $a \in \mathbb{R}$, for every b > 0, let G_a be graph of $15x^3 - 8y^2 = ax^3y^2$ and let H_b be graph of $x^5 + y^4 = b$.

both on G_7 and on H_2 .

Show that the tangent lines to G_7 and H_2

a. Let p be the point (1,1), which lies

at p are perpendicular.

b. Let a and b be any two real numbers, with b > 0.

Let q be any point which lies both on G_a and on H_b .

Show that the tangent lines to G_a and H_b at q are perpendicular.

Challenge problem (not assigned):

For every $a, b \in \mathbb{R}$, let G_a be graph of $e^{-x} - e^{-y} = a$ and let H_b be graph of $e^x + e^y = 2b$.

- both on G_0 and on H_e . Show that the tangent lines to G_0 and H_e
- at p are perpendicular.
- b. Let a and b be any two real numbers.

a. Let p be the point (1,1), which lies

Let q be any point which lies both on G_a and on H_b .

Show that the tangent lines to G_a and H_b at q are perpendicular.