CALCULUS Newton's method NEVV O530-1. We wish to solve $x^5 - 5x^3 + 8 = 0$. Starting with an initial guess of $x_1 = 2$, compute the next two guesses, x_2 and x_3 , to at least four decimals, using Newton's method. O530-2. We wish to solve $x^5 - 5x^3 - 12 = 0$. Starting with an initial guess of $x_1 = 2$, compute the next two guesses, x_2 and x_3 , to at least four decimals, using Newton's method. O530-3. We wish to solve $x^5 - 4 = 0$. Starting with an initial guess of $x_1 = 1$, compute the next two guesses, x_2 and x_3 , to at least four decimals, using Newton's method. O530-4. We wish to solve $x^5 + 2x^3 + 3 = 0$. Starting with an initial guess of $x_1 = -1$, compute the next two guesses, x_2 and x_3 , to at least four decimals, using Newton's method. O530-5. We wish to solve $x^3 - 8 = 0$. Starting with an initial guess of $x_1 = -1$, compute the next two guesses, x_2 and x_3 , to at least four decimals, using Newton's method. 0530-6. Using Newton's method, calculate $\sqrt[3]{6}$, to five decimal places. 0530-7. Find the unique solution to $3x = \cos x$, to five decimal places. O530-8. Find a solution to $3x^{5/3} + x = -2$, to five decimal places, by applying Newton's method to $f(x) = 3x^{5/3} + x + 2$, with $x_1 = 1.5$. O530-9. We wish to solve $t + \sqrt[3]{t} = 0$. Let $t_1 := \frac{1}{3\sqrt{3}}$. Starting with this initial guess t_1 , compute the next six guesses, t_2, \ldots, t_7 , using Newton's method. Draw a picture, to illustrate what is happening.