CALCULUS Continuity OLD

- 0210-1. a. At which numbers is the function f, shown above, discontinuous?
 - b. For each of the numbers, given in Part a, where f is discontinuous, state whether or not f is continuous from the LEFT at that number.
 - c. For each of the numbers, given in Part a, where f is discontinuous, state whether or not f is continuous from the RIGHT at that number.

$$0210-2$$
. Display the graph of a function f

s.t.
$$\lim_{x \to -1^-} f(x) = -3$$
, $\lim_{x \to -1^+} f(x) = 1$,

$$x\rightarrow -1^{-} \qquad \qquad x\rightarrow -1^{+}$$
 and s.t.
$$f(-1)=-2,$$

and s.t.
$$\lim_{x\to 1^-} f(x) = \infty, \quad \lim_{x\to 1^+} f(x) = -\infty,$$

and s.t.
$$\lim_{x\to 2} f(x) = -\infty$$

and s.t.
$$\lim_{x\to -\infty} f(x) = 1, \quad \lim_{x\to \infty} f(x) = -4.$$

0210-3. Let $f(x) = (2\sqrt{x} + 3)^{100}$. Using the properties of limits, show that f is continuous at 7.

O210-4.

Let
$$f(x) = \begin{cases} 2x + 5, & \text{if } x < -1 \\ 4, & \text{if } x = -1 \\ x^2 + 2, & \text{if } x > -1. \end{cases}$$

a. Does $\lim_{x\to -1} f(x)$ exist? If so, compute it.

b. Is f continuous at -1?

Let
$$g(x) = \begin{cases} \sin x, & \text{if } x < 0 \\ 4, & \text{if } x = 0 \\ x^2 + 2, & \text{if } x > 0. \end{cases}$$

- a. Does $\lim_{x\to 0} g(x)$ exist? If so, compute it.
- b. Is q continuous at 0?

Let
$$g(x) = \begin{cases} \sin x, & \text{if } x < 0 \\ 4, & \text{if } x = 0 \\ x^2 + 2, & \text{if } x > 0. \end{cases}$$

- a. Does $\lim_{x\to -1} g(x)$ exist? If so, compute it.
- b. Is q continuous at -1?

0210-7. Let
$$f(x) = \sqrt{x}$$
.

- a. Is f continuous at 0?
- b. Is f continuous on $[0, \infty)$?
- c. Is f continuous?

0210-8. Let
$$g(x) = 1/\sqrt{x}$$
.

- a. Is g continuous at 0?
- b. Is g continuous on $(0, \infty)$?
- **c**. Is *g* continuous?

O210-10. Let
$$f(x) = \begin{cases} x^2 + 3, & \text{if } x < 2 \\ 2x + 3, & \text{if } 2 \le x < 3 \\ 5[\cos(x - 3)], & \text{if } 3 \le x. \end{cases}$$
 a. At which numbers is the function f discontinuous?

b. For each of the numbers, given in Part a, where f is discontinuous, state whether or not f is continuous from the LEFT at that number.

c. For each of the numbers, given in Part a, where f is discontinuous, state whether or not f is continuous from the RIGHT at that number.

- a. At which numbers is the function g discontinuous?
- b. For each of the numbers, given in Part a, where g is discontinuous, state whether or not the discontinuity is removable.

0210-12. Find a number a s.t.

$$f(x) = \begin{cases} ae^x, & \text{if } x \le 0\\ 2ax^2 + 4a - 6, & \text{if } 0 < x \end{cases}$$

is continuous at x = 0.

$$\frac{0210-13. \text{ Let } h(x) = \frac{x^2 + 2x - 8}{x - 2}.$$

Find a function $p: \mathbb{R} \to \mathbb{R}$ such that p is continuous at 2 and such that, $\forall x \in \mathbb{R} \setminus \{2\}, \ p(x) = h(x).$

0210-14.

Using the Intermediate Value Theorem, show that $x^5 + 2x - 8 = 0$ has a solution x = c that satisfies -2 < c < 2.

0210-15.

Using the Intermediate Value Theorem, show that $e^x = x + 7$ has a solution x = c that satisfies -1 < c < 5.