CALCULUS Maxima and minima OLD

0450-1.a. Sketch the graph of a continuous function whose domain is $[1,\infty)$, and which has exactly one global minimum, and no local minima.

b. Sketch the graph of a continuous function whose domain is $[1,\infty)$, and which has exactly one local minimum, and no global minima.

O450-2. Let $f:[a,z]\to\mathbb{R}$ be the function whose graph is shown below.

i. For each number a,b,c,d,e,r,s,t,u,v,w,x,z, state whether or not f has, at that number,

- a global maximuma global minimum
- a local maximum
- a local minimum.
- ii. Which of a,b,c,d,e,r,s,t,u,v,w,x,z, is a critical number for f?

0450-3. Let $f: [-4,4] \to \mathbb{R}$ be the function whose graph is displayed below.

- a.At what numbers x does f(x) have a local minimum?
- b. What are the corresponding local minimum values?
- c.At what numbers x does f(x) have a local maximum?
- d. What are the corresponding local maximum values?

0450-4. Let $f: [-4,4] \to \mathbb{R}$ be the function whose graph is displayed below.

- a.At what numbers x does f(x) have a global minimum?
- b. What is the corresponding global minimum value?
- c.At what numbers x does f(x) have a global maximum?
- d. What is the corresponding global maximum value?

```
<u>0450-5</u>.
 Sketch a graph of a function
    whose domain is [-3, 2] and which has
                 no global maxima,
                 two local maxima,
             and two global minima.
 Note: By the Extreme Value Theorem,
            it cannot be continuous on [-3, 2].
0450-6.
 Sketch a graph of a function whose domain
     is [1,4], which is continuous on [1,4]
     and which has
                two global maxima,
                no local maxima
           and one local minimum.
```

- 0450-7. Define $f: [-2,2] \to \mathbb{R}$ by $f(x) = x^2$.
 - a. Sketch the graph of f.
 - b. Does f have a global maximum?

 If so, at what number(s)?
 - c. Does f have a global minimum? If so, at what number(s)?
 - d. Does f have a local maximum? If so, at what number(s)?
 - e. Does f have a local minimum?

 If so, at what number(s)?
 - f. What are the critical numbers of f?

- 0450-8. Define $f:(-2,2)\to \mathbb{R}$ by $f(x)=x^2$.
 - a. Sketch the graph of f.
 - b. Does f have a global maximum?

 If so, at what number(s)?
 - c. Does f have a global minimum? If so, at what number(s)?
 - d. Does f have a local maximum? If so, at what number(s)?
 - e. Does f have a local minimum? If so, at what number(s)?
 - f. What are the critical numbers of f?

- 0450-9. Define $f: [-2,2] \to \mathbb{R}$ by $f(x) = x^3$.
 - a. Sketch the graph of f.
 - b. Does f have a global maximum?

 If so, at what number(s)?
 - c. Does f have a global minimum? If so, at what number(s)?
 - d. Does f have a local maximum? If so, at what number(s)?
 - e. Does f have a local minimum? If so, at what number(s)?
 - f. What are the critical numbers of f?

- 0450-10. Define $f:(-2,2)\to \mathbb{R}$ by $f(x)=x^3$.
 - a. Sketch the graph of f.
 - b. Does f have a global maximum?

 If so, at what number(s)?
 - c. Does f have a global minimum? If so, at what number(s)?
 - d. Does f have a local maximum? If so, at what number(s)?
 - e. Does f have a local minimum?

 If so, at what number(s)?
 - f. What are the critical numbers of f?

0450-11. Define $f: (-2,2) \to \mathbb{R}$ by $f(x) = 1 + (x+1)^3$.

- a. Sketch the graph of f.
- b. Does f have a global maximum?

 If so, at what number(s)?
- c. Does f have a global minimum? If so, at what number(s)?
- d. Does f have a local maximum?

 If so, at what number(s)?
- e. Does f have a local minimum?

 If so, at what number(s)?
- f. What are the critical numbers of f?

0450-12. Define $f: [-2,2] \to \mathbb{R}$ by $f(x) = 1 + (x+1)^3$.

- a. Sketch the graph of f.
- b. Does f have a global maximum? If so, at what number(s)?
- c. Does f have a global minimum? If so, at what number(s)?
- d. Does f have a local maximum?

 If so, at what number(s)?
- e. Does f have a local minimum? If so, at what number(s)?
- f. What are the critical numbers of f?

O450-13. Find the critical numbers of $f(x) = 2x^3 + 9x^2 - 60x + 24.$

O450-14. Find the critical numbers of
$$f(x) = |x^2 - 8x + 15|$$
.

0450-15. Find the critical numbers of

 $f(x) = \sin x$.

0450-17. Find the critical numbers of
$$f(x) = |\sin x|$$
.

 $f(x) = |x^2 + 2x + 1|$.

O450-18. Find the global maximum and minimum values of
$$f(x) = 2x^3 + 9x^2 - 60x + 24$$
 on $-6 \le x \le 3$.

$$g(t) = \frac{2t}{t^2 + 4}$$
 on $-1 < t < 3$.

O450-20. Find the global maximum and minimum values of
$$H(s) = se^{-s^2/2}$$

on
$$-4 \le s \le 8$$
.