CALCULUS Newton's method OLD

Starting with an initial guess of $x_1 = 1$, compute the next two guesses, x_2 and x_3 , to at least four decimals, using Newton's method.

Starting with an initial guess of $x_1 = 1$, compute the next two guesses, x_2 and x_3 , to at least four decimals, using Newton's method.

O530-3. We wish to solve $x^3 - 5 = 0$. Starting with an initial guess of $x_1 = 1$, compute the next two guesses, x_2 and x_3 , to at least four decimals, using Newton's method.

Starting with an initial guess of $x_1 = 1$, compute the next two guesses, x_2 and x_3 , to at least four decimals, using Newton's method.

O530-5. We wish to solve $x^2 - 4 = 0$. Starting with an initial guess of $x_1 = 1$, compute the next two guesses, x_2 and x_3 , to at least four decimals, using Newton's method.

0530-6. Using Newton's method, calculate $\sqrt[3]{7}$,

to five decimal places.

0530-7. Find the unique solution to $2x = \cos x$, to five decimal places.

0530-8. Find a solution to $\tan x = 2x$, to five decimal places, by applying Newton's method to $f(x) = 2x - (\tan x)$, with $x_1 = 1$.

O530-9. We wish to solve $\sin t = 0$. Let $t_1 > 0$ satisfy $\tan t_1 = 2t_1$. In O530-8, t_1 is found, to five decimals. Starting with this initial guess t_1 , compute the next six guesses, t_2, \ldots, t_7 , using Newton's method. Draw a picture, to illustrate what is happening.