CALCULUS Linear approximation OLD

O540-1. Find the linearization of
$$f(x) = 2x^3 - 5x$$
 at $x = 2$.

That is, find m and a s.t. the linear function L(x) = a + m(x - 2) has the same 1-jet at x = 2 as does f(x).

That is, find m and a s.t. the linear function L(x) = a + m(x-2) satisfies: L(2) = f(2) and L'(2) = f'(2).

2

O540-2. Find the linearization of
$$f(x) = \sec x$$
 at $x = \pi/4$.

That is, find m and a s.t. the linear function $L(x) = a + m(x - (\pi/4))$ has the same 1-jet at $x = \pi/4$ as does f(x).

That is, find m and a s.t. the linear function $L(x) = a + m(x - (\pi/4))$ satisfies: $L(\pi/4) = f(\pi/4)$

and $L'(\pi/4) = f'(\pi/4)$.

0540-3. Let
$$y = \frac{x^2 \cos x}{e^x}$$
.

Compute $\triangle y$ and dy.

0540-4. Let
$$u = \frac{w+4}{\cos(2w+8)}$$
.

Compute $\triangle u$ and du.

0540-5. Let
$$z = \frac{e^{2v^2}}{\tan(4v-1)}$$
.

a. Compute $[\triangle z]_{v:\to 0, \triangle v:\to 0.001}$.

b. Compute
$$[dz]_{v:\to 0, dv:\to 0.001}$$
.

- 0540-6.a. Compute $(3.001)^8$.
 - b. Approx. $(3.001)^8$ by differentials.
 - c. Let L(x) be the linearization of $f(x) = x^8$ at x = 3. Compute L(3.001).

O540-7. Let θ be the number of radians in 29.9°. Approximate $\cos \theta$ by differentials.

0540-8. Approx. $e^{0.05}$ by differentials.

- 0540-9. We need to paint a cube whose side length is 10 meters.
 - The coat of paint is to be 0.001 meters thick, so, after painting, the sides will have length 10.002 meters.
 - a. Let $V = s^3$. Compute $\triangle V$ and dV.
 - b. Using $\triangle V$, compute the exact volume of paint that will be needed.
 - c. Using dV, estimate the volume of paint that will be needed.
 - d. Compute 0.001 times the surface area of a cube of side length 10 meters.

0540-10. A regular tetrahedron of height h has volume $\frac{\sqrt{3}}{8}h^3$.

Pharaoh asks us to build a pyramid in the shape of a regular tetrahedron, whose height is 300 ± 1 feet.

Up to some error, its volume will be $\frac{\sqrt{3}}{8}(300)^3$ cubic feet.

Using differentials, estimate that error.