CALCULUS
Volume by slices and
the disk and washer methods:
Problems
OID

- O720-1. Let R be the region bounded by y = x + 1 and x = 2 in $1 \le y \le 2$.
 - a. Sketch R. b. Find the volume of the solid obtained by rotating R about the x-axis.
- c. Find the volume of the solid obtained by rotating R about the y-axis. 0720-2. Let R be the region bounded by
 - $y-1=(x-1)^2$ and y=x. a. Sketch R. b. Find the volume of the solid obtained by

O720-3. Let R be the region bounded by $y = \ln x$, x = 4 and y = 1.

- a. Sketch R.
- b. Find the volume of the solid obtained by rotating R about the y-axis.
- 0720-4. Let R be the region bounded by $y=\sin x$ and y=0 in $0\leq x\leq \pi$.
 - a. Sketch R.
 - b. Find the volume of the solid obtained by rotating R about the x-axis.

Hint:
$$\sin^2 x = \frac{1 - [\cos(2x)]}{2}$$

O720-5. Let
$$R$$
 be the region bounded by $x^2 + (y-3)^2 = 1$.

- a. Sketch R.
- b. Find the volume of the solid obtained by rotating R about the x-axis.

Note: This solid is called a torus. It is in the shape of a doughnut.

Hint: Remember that
$$2\int_{-1}^{1} \sqrt{1-x^2} \, dx$$
 is known; it is the area enclosed in a circle of radius 1.

- 0720-6. Let R be the region bounded by $y=x^3$ and $x=y^4$.
 - a. Sketch R.
 b. Find the volume of the solid obtained by rotating R about the line y=-1/2.
- c. Find the volume of the solid obtained by rotating R about the line x=-1/3.

 O720-7. Let R be the region bounded by
 - $y=x^2 \ {\rm and} \ x=y^6.$ a. Sketch R. b. Find the volume of the solid obtained by
 - rotating R about the line y=-1/2. c. Find the volume of the solid obtained by rotating R about the line x=-1/3.

0720-8. Let R be the region bounded by $y=4\cos x,\ y=e^x \text{ in } 0\leq x\leq \pi/4.$

Set up, but do not evaluate, an integral that yields the volume of the solid obtained by rotating R about the line y = 5.

0720-9. Describe the solid of revolution whose volume is given by

$$\pi \int_{1}^{2} \left(9e^{8x} - 4e^{2x}\right) dx.$$

Do not evaluate this integral.

0720-10. Describe the solid of revolution whose volume is given by

$$\pi \int_{\pi/2}^{\pi} (2 + \sin x)^2 - 4 \, dx.$$

Do not evaluate this integral.

0720-11. A solid S sits above a horizontal plane P. $\forall x > 0$, let P_x be the horizontal plane that is x units above P. Suppose that S lies between P_1 and P_2 . Suppose, also, that $\forall x \in [1,2]$, the intersection of S and P_x is the region inside an ellipse whose major axis has length xand whose minor axis has length e^{2x^2}

Compute the volume of S.

Hint: Remember that if a and b are the major and minor axes of an ellipse E, then the area inside E is $\pi ab/4$.

0720-12. Using the disk method, find the volume in a ball of radius 5, following the diagram shown below.

O720-13. We create a napkin holder by drilling a cylindrical hole of radius 4 through the middle of a ball of radius 5, as shown below. Using the washer method, find its volume.

