## Math 1271 Quiz 1

January 30, 2014

Name: SOLUTIONS

TA:

NO CALCULATORS. NO HANDHELD DEVICES. NO BOOKS OR REFERENCE MATERIALS OF ANY KIND.

Time allowed: 20 minutes; Grader: Ashley Earls. Good luck!

1. (a) (15 points) Find the domain of  $f(x) = \ln(e^x - 3)$ .

$$e^{x}-3>0$$
 $e^{x}>3$ 
domain of  $f(x)$ :  $x>\ln 3$ 
domain of  $f:(\ln 3, \infty)$ 

(b) (20 points) Find  $f^{-1}(x)$  and state its domain.

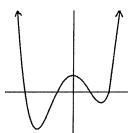
$$x = \ln(e^{y} - 3)$$

$$e^{x} = e^{y} - 3$$

$$e^{x} + 3 = e^{y}$$

$$\ln(e^{x} + 3) = y$$

$$f^{-1}(x) = \ln(e^{x} + 3)$$


$$\begin{cases} e^{x} + 3 > 0 \\ e^{x} > -3 \end{cases}$$

$$\forall x \in \mathbb{R}, \ e^{x} > 0 > -3$$

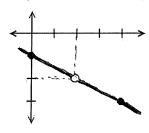
$$\text{domain of } f^{-}(x): \ all \ red \ x$$

$$\text{domain of } f^{-}: \ \mathbb{R} = (-\infty, \infty)$$

2. (15 points, no partial credit) Below is the graph of a function f with domain  $\mathbb{R}$  and target  $\mathbb{R}$ .



Pick the correct statement.


- (a) f is both one-to-one and onto.
- (b) f is one-to-one but not onto.
- (c) f is onto but not one-to-one.
- (d) f is neither one-to-one nor onto.

PLEASE SEE THE OTHER SIDE FOR MORE PROBLEMS.

3. (15 points, no partial credit) True or false? If  $h(x) = (x+1)(x^2-3x+4)$ , then x = -1 is a root of h(x) of multiplicity 1.

$$[x^2 - 3x + 4]_{x: \rightarrow -1} = [+3 + 4 = 8 \neq 0]$$
Thue

- 4. Let  $f(x) = \left[ -\frac{1}{2}x 1 \right] \left[ \frac{x-2}{x-2} \right]$ .
  - (a) (15 points) Sketch a graph of f that includes the points (0, -1) and (4, -3).



(b) (20 points) Find the largest  $\delta$  such that

$$0 < |x - 2| < \delta \implies |f(x) + 2| < 0.4$$
.

$$S = \frac{0.4}{|-1/2|} = \frac{0.4}{1/2} = 0.8$$