CALCULUS Basics of trigonometry

A degree is one 360^{th} of a full revolution.

etc.

$$\pi:=$$
 the ratio of the circumference of a circle to its diameter

A degree is one 360^{th} of a full revolution.

 π radians = 180 degrees

1 radian = $180/\pi$ degrees $\frac{1}{1}$ rad $\pi/2$ radians = 90 degrees

In this class, we use radians, §4.1 unless otherwise specified.

A degree is one 360^{th} of a full revolution.

A radian is one $2\pi^{th}$ of a full revolution.

1 radian = $180/\pi$ degrees

The unit circle is the circle of radius 1 whose center is the origin.

A radian is one $2\pi^{th}$ of a full revolution.

In this class, we use radians, §4.1 unless otherwise specified.

A degree is one 360^{th} of a full revolution.

A radian is one $2\pi^{th}$ of a full revolution. 1 radian = $180/\pi$ degrees

The unit circle is the circle of radius 1 whose center is the origin.

§4.1 unless otherwise specified.

A degree is one 360^{th} of a full revolution. A radian is one $2\pi^{th}$ of a full revolution. 1 radian = $180/\pi$ degrees

The standard orbiter is a particle that travels counterclockwise at speed 1 starting at (1,0)

1 rad per sec

A degree is one 360^{th} of a full revolution.

A radian is one $2\pi^{th}$ of a full revolution.

1 radian = $180/\pi$ degrees

Back to time 0...

A degree is one 360^{th} of a full revolution. A radian is one $2\pi^{th}$ of a full revolution. 1 radian = $180/\pi$ degrees

δ4.1

A degree is one 360^{th} of a full revolution. A radian is one $2\pi^{th}$ of a full revolution. 1 radian = $180/\pi$ degrees

ξ4.1

A degree is one 360^{th} of a full revolution. A radian is one $2\pi^{th}$ of a full revolution. 1 radian = $180/\pi$ degrees

A degree is one 360^{th} of a full revolution. A radian is one $2\pi^{th}$ of a full revolution. 1 radian = $180/\pi$ degrees

t can be any (real) number . . . very college!

 $\forall t \in \mathbb{R}$, let $\underline{\sin t}$ be the y-coordinate of the standard orbiter at time t

 $\forall t \in \mathbb{R}$, let $\underline{\sin t}$ be the y-coordinate of the standard orbiter at time t

 \sin is periodic with period 2π

	at tille v	
t	$\sin t$	
$\frac{\pi}{2}$	$\frac{\sqrt{4}}{2} = 1$	
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	 -
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	() ()
$\frac{\pi}{4}$ $\frac{\pi}{5}$	SKIP	: :
$\frac{\pi}{6}$	$\frac{\sqrt{1}}{2} = \frac{1}{2}$	
0	$\frac{\sqrt{0}}{2} = 0$	

 $\forall t \in \mathbb{R}$, let $\underline{\sin t}$ be the y-coordinate of the standard orbiter at time t $\sin t$ sin is periodic with period 2π SKIP

 $\forall t \in \mathbb{R}$, let $\underline{\sin t}$ be the y-coordinate of the standard orbiter at time t $\sin t$ sin is periodic with period 2π (a,a) at $\pi/4$ \boldsymbol{a} \overline{a} SKIP **2***a* Goal: Find a. 15

 $\forall t \in \mathbb{R}$, let $\underline{\sin t}$ be the y-coordinate of the standard orbiter at time t sin is periodic with period 2π

SKILL sin comp

Learn the y-coordinate of all of these blue points on the circle

 $\forall t \in \mathbb{R}$, let $\underline{\sin t}$ be the y-coordinate of the standard orbiter at time t sin is periodic with period 2π

 $orall t \in \mathbb{R}$, let $\overline{\sin t}$ be the y-coordinate of the standard orbiter at time t

is defined to be sin of the complementary angle.

 $\forall t \in \mathbb{R}$, let $\sin t$ be the y-coordinate of the standard orbiter at time t

$$\forall t \in \mathbb{R}, \text{ let } \cos t := \sin(\frac{\pi}{2} - t).$$

Two angles are complementary

 $\forall t \in \mathbb{R}$, let $\underline{\sin t}$ be the y-coordinate of the standard orbiter at time t

$$\forall t \in \mathbb{R}, \text{ let } \cos t := \sin(\frac{\pi}{2} - t).$$

Two angles are complementary if their sum is $\frac{\pi}{2}$.

cos of an angle is defined to be sin of the complementary angle.

 $\forall t \in \mathbb{R}$, let $\underline{\sin t}$ be the y-coordinate of the standard orbiter at time t $\forall t \in \mathbb{R}$, let $\underline{\cos t} := \sin(\frac{\pi}{2} - t)$.

Two angles are complementary if their sum is $\frac{\pi}{2}$. $\cos t \cos t$ (a,b) at t

 $orall t \in \mathbb{R}$, $\cos t$ is the x-coordinate of the standard orbiter at time t

21

the standard orbiter at time t

 $\forall t \in \mathbb{R}$, $\cos t$ is the x-coordinate of the standard orbiter at time t

 $\forall t \in \mathbb{R}$, $\cos t$ is the x-coordinate of the standard orbiter at time t

Next: π -antiperiodicity of sin and cos

 $\forall t \in \mathbb{R}, \ \cos t$ is the x-coordinate of the standard orbiter at time t

Learn these formulas!

$$\forall t \in \mathbb{R},$$

$$\cos(t + \pi) = -\cos t$$

$$\sin(t + \pi) = -\sin t$$

t is a "dummy variable"

$$\forall x \in \mathbb{R},$$
 $\cos(x + \pi) = -\cos x$
 $\sin(x + \pi) = -\sin x$

 $\forall t \in \mathbb{R}$, $\cos t$ is the x-coordinate of the standard orbiter at time t

Learn the x-coordinate of all of these blue points on the circle . . .

New functions & formulas...

New functions & formulas... tan, sec

complementary angles
$$\cos \theta := \sin(\frac{\pi}{2} - \theta)$$

$$\tan \theta := \frac{\sin \theta}{\cos \theta}$$

$$1 + [\tan^2 \theta] = \sec^2 \theta$$

$$tan \theta$$

$$1 + [\tan^2 \theta] = \sec^2 \theta$$
$$[\sin^2 \theta] + [\cos^2 \theta] = 1$$

28

New functions & formulas... tan, sec, cot, csc

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$\tan \theta := \frac{\sin \theta}{\cos \theta}$$

$$\sec \theta := \frac{1}{\cos \theta}$$

$$\cos \theta := \sin(\frac{\pi}{2} - \theta)$$

$$\cot \theta := \tan(\frac{\pi}{2} - \theta)$$

$$\csc \theta := \sec(\frac{\pi}{2} - \theta)$$

Learn all these formulas!

 $\sin \theta$

$$\theta: \to \frac{\pi}{2} - \theta$$

$$1 + [\cot^2 \theta] = \csc^2 \theta$$
$$1 + [\tan^2 \theta] = \sec^2 \theta$$

$$[\sin^2\theta] + [\cos^2\theta] = 1$$

self-complementary

29

 $\csc \theta$

The geometry of the six trig functions:

SKILL preimage under trig

Whitman problems §4.1, p. 66, #1-2

SKILL trig identities

Whitman problems §4.1, p. 66, #5-7

SKILL image under trig

Whitman problems §4.1, p. 66, #3-4

SKILL trig graphing

Whitman problems §4.1, p. 66, #8-10

SKILL solve trig eq'n

Whitman problems §4.1, p. 66, #11

