CALCULUS The limit game and the exact definition of a limit

THE LIMIT GAME!

No answer needed! How close is close?

- 1. You pick a vertical distance $\varepsilon > 0$.
 - represents tolerance for output error
- 2. I pick a horizontal distance $\delta > 0$.
 - e.g. represents tolerance for input error
- 3. You pick a point on the x-axis. Must meet input tolerance.

Must be within δ of 2, but not equal to 2.

4. Apply f to the point.

I win if output meets output tolerance.

If answer is within ε of 5, then I win; otherwise you win.

2

§2.3, p. 29, Def'n 2.3: $\lim_{x \to 0} f(x) = L$ is read the limit of f(x) as x approaches a is equal to L and means, intuitively: if x is close to a, but not actually equal to a, then f(x) is close to L or: if dist(x,a) is small, but not actually 0, then dist(f(x), L) is small and means, rigorously: \forall tolerance to output error $\varepsilon > 0$, \exists tolerance to input error $\delta > 0$ such that if dist(x,a) is small enough to meet the input tolerance of δ , but is not actually 0, then dist(f(x), L) is small enough 3 to meet the output tolerance of ε

§2.3, p. 29, Def'n 2.3: $\lim_{x \to 0} f(x) = L$ is read the limit of f(x) as x approaches a is equal to L and means, rigorously: \forall tolerance to output error $\varepsilon > 0$, \exists tolerance to input error $\delta > 0$ such that if dist(x,a) is small enough to preet the input tolerance of δ , but is not actually 0, and means, rigorously: ∀tolerance to bûtput error ε"> 0?ugh $\exists \text{tolerance to input error } \delta > \text{otput tolerance of } \varepsilon$ or: such that $\forall \varepsilon > 0$, dist(x,a) is small enough to meet the input tolerance of δ , but is not actually 0, then dist(f(x), L) is small enough to meet the output tolerance of ε

```
§2.3, p. 29, Def'n 2.3: \lim_{x \to 0} f(x) = L
                                              is read
        the limit of f(x) as x approaches a is equal to L
  and means, rigorously:
     \foralltolerance to output error \varepsilon > 0,
     \existstolerance to input error \delta > 0
       such that
             if dist(x,a) is small enough
                       to meet the input tolerance of \delta,
                                     but is not actually 0,
        then dist(f(x), L) is small enough
                       to meet the output tolerance of \varepsilon
  or:
       \forall \varepsilon > 0, \exists \delta > 0 such that
             if dist(x, a) < \delta, but dist(x, a) \neq 0,
        then dist(f(x), L) < \varepsilon
```

§2.3, p. 29, Def'n 2.3: $\lim_{x\to a} f(x) = L$ is read the limit of f(x) as x approaches a is equal to L and means, rigorously:

Theams, rigorously.
$$\forall \varepsilon>0, \ \exists \delta>0 \ \text{such that} \qquad \qquad \underset{t}{\text{dist}}(x,a)>0$$
 if $\operatorname{dist}(x,a)<\delta, \qquad \text{but } \operatorname{dist}(x,a)\neq 0,$ then $\operatorname{dist}(f(x),L)<\varepsilon$

PERFECTLY RIGOROUS,

BUT ATYPICALLY PHRASED.

MORE TYPICAL...

$$\forall \varepsilon > 0, \ \exists \delta > 0 \ \text{such that}$$
 if $\operatorname{dist}(x,a) < \delta, \ \text{but } \operatorname{dist}(x,a) \neq 0,$ then $\operatorname{dist}(f(x),L) < \varepsilon$

 $\S 2.3$, p. 29, Def'n 2.3: $\lim_{x \to a} f(x) = L$ is read the limit of f(x) as x approaches a is equal to L and means, rigorously: $\forall \varepsilon > 0, \ \exists \delta > 0 \ \text{such that}$ dist(x,a) > 0

$$orall arepsilon>0$$
, $\exists \delta>0$ such that
$$\text{if } \operatorname{dist}(x,a)<\delta, \qquad \text{but } \operatorname{dist}(x,a)\neq\emptyset,$$
 then $\operatorname{dist}(f(x),L)<\varepsilon$

or:

$$orall arepsilon>0$$
 , $\exists \delta>0$ such that if $0<\mathrm{dist}(x,a)<\delta$, then $\mathrm{dist}(f(x)/L)$

or: $\forall \varepsilon > 0, \ \exists \delta > 0 \ \text{such that}$ if $0 < |x - a| < \delta,$ then $|(f(x)) - L| < \varepsilon$

 $< \varepsilon$

 $\operatorname{dist}(s,t) = |s-t|$

§2.:

§2.3, p. 29, Def'n 2.3: $\lim_{x\to a} f(x) = L$ is read the limit of f(x) as x approaches a is equal to L and means, rigorously:

$$orall arepsilon>0$$
 , $\exists \delta>0$ such that
$$|\delta|<|x-a|<\delta, \quad \text{then } |f(x)|-L|$$

The typical form of the rigorous definition

FYI: Intuitive def'ns will be tested, but not the rigorous ones.

$$orall arepsilon>0$$
 , $\exists \delta>0$ such that if $0<|x-a|<\delta$, then $|(f(x))-L|$

Def'n:
$$\lim_{x \to a} f(x) = L$$
 is read

the limit of f(x) as x approaches a is equal to L and means, rigorously:

and
$$\forall \varepsilon \geq 0$$
, $\exists \delta \geq 0$ such that if $0 < |x - a| < \delta$, Ithen $|(f(x)) - L| < \varepsilon$. then $f(x)$ is close to L

and means, rigorously:

$$\forall \varepsilon > 0$$
, $\exists \delta > 0$ such that if $0 < |x - a| < \delta$, then $|(f(x)) - L| < \varepsilon$.

Defin:
$$\lim_{x \to a} f(x) = L$$
 is read the limit of $f(x)$ as x approaches a is equal to L

if x is close to a, but not equal to a,

then f(x) is close to L

and means, rigorously:

$$orall arepsilon > 0, \;\; \exists \delta > 0 \;\; ext{such that}$$
 if $0 < |x-a| < \delta, \;\; ext{then} \;\; |(f(x)) - L| < arepsilon.$

Alternative notation: $f(x) \to L$ as $x \not\equiv a$ NONSTANDARD

Defin:
$$\lim_{x\to a^-} f(x) = L$$
 is read the limit of $f(x)$ as x approaches a from the left is equal to L

if
$$x$$
 is close to a , but less than a ,

then f(x) is close to L

and means, rigorously:

$$\forall \varepsilon > 0$$
, $\exists \delta > 0$ such that if $a - \delta < x < a$, then $|(f(x)) - L| < \varepsilon$.

Alternative notation:
$$f(x) \to L$$
 as $\underbrace{x \to a^-}_{x \uparrow a}$, $\lim_{x \uparrow a} f(x) = L$

§2.4, p. 34, Def 2.11: $\lim_{x\to a^+} f(x) = L$ is read the limit of f(x) as x approaches a from the right is equal to L

and means, intuitively:

if
$$x$$
 is close to a , but greater than a , then $f(x)$ is close to L

 \boldsymbol{a}

and means, rigorously:

$$orall arepsilon > 0$$
, $\exists \delta > 0$ such that
$$|f| \ a < x < a + \delta, \quad \text{then } |(f(x)) - L| < \varepsilon.$$

Alternative notation: $f(x) \to L$ as $x \to a^+$, $\lim f(x) = L$

Fact:
$$\lim_{x \to a} f(x) = L$$
 iff

both
$$\lim_{x\to a^-} f(x) = L$$
 and $\lim_{x\to a^+} f(x) = L$.

Defin:
$$\lim_{x\to a^+} f(x) = \infty$$
 is read the limit of $f(x)$ as x approaches a from the right is equal to infinity

if
$$x$$
 is close to a , but greater than a ,

then
$$f(x)$$
 is very positive

and means, rigorously:

but I will . . .

$$\forall R > 0$$
, $\exists \delta > 0$ such that

if $a < x < a + \delta$, then f(x) > R.

vertical

asymptote"

Alternative notation:
$$f(x) \to \infty$$
 as $x \to a^+$, $\lim_{x \downarrow a} f(x) = \infty$ "> 0" needed only on ε $x \downarrow a$ traditional on ε and δ on other i/p or o/p specifications, traditional not to say "> 0" or "< 0",

Def'n:
$$\lim_{\perp} f(x) = -\infty$$
 is read

the limit of
$$f(x)$$
 as x approaches a from the right is equal to negative infinity

if x is close to a, but greater than a,

then
$$f(x)$$
 is very negative

and means, rigorously:

$$\forall R < \mathbf{0}, \ \exists \delta > \mathbf{0} \ \mathrm{such that}$$

if
$$a < x < a + \delta$$
,

vertical

asymptote"

Alternative notation:
$$f(x) \to -\infty$$
 as $\underbrace{x \to a^+}_{x \downarrow a}$, $\lim_{x \downarrow a} f(x) = -\infty$

Def'n:
$$\lim_{x \to a} f(x) = -\infty$$
 is read

the limit of f(x) as x approaches a

is equal to negative infinity

and means, intuitively:

if x is close to a, but not equal to a

then f(x) is very negative

and means, rigorously:

$$\forall R < 0$$
, $\exists \delta > 0$ such that

if
$$0<|x-a|<\delta$$
 ,

if $0 < |x - a| < \delta$, then f(x) < R.

vertical

asymptote

Def'n:
$$\lim_{x \to a} f(x) = \infty$$
 is read

the limit of
$$f(x)$$
 as x approaches a is equal to infinity

if
$$x$$
 is close to a , but not equal to a ,

then
$$f(x)$$
 is very positive

and means, rigorously:

$$orall R>0, \; \exists \delta>0 \; ext{such that}$$
 if $0<|x-a|<\delta, \; ext{then} \; f(x)>R.$

Alternative notation: $f(x) \to \infty$ as $x \to a$

Defin:
$$\lim_{x\to a^-} f(x) = \infty$$
 is read the limit of $f(x)$ as x approaches a from the left is equal to infinity and means, intuitively:

if
$$x$$
 is close to a , but less than a ,

vertical asymptote

then f(x) is very positive

and means, rigorously:

$$\forall R>0,\ \exists \delta>0$$
 such that

if
$$a - \delta < x < a$$
, then $f(x) > R$.

Alternative notation:
$$f(x) \to \infty$$
 as $x \to a^-$, $\lim_{x \to a} f(x) = \infty$

Fact:
$$\lim_{x \to a} f(x) = \infty$$
 iff

both
$$\lim_{x \to a^{-}} f(x) = \infty$$
 and $\lim_{x \to a^{+}} f(x) = \infty$.

Def'n:
$$\lim_{x \to a^{-}} f(x) = -\infty$$
 is read

the limit of f(x) as x approaches a from the left is equal to negative infinity

and means, intuitively:

if
$$x$$
 is close to a , but less than a ,

then f(x) is very negative

and means, rigorously:

$$\forall R < 0, \ \exists \delta > 0 \ \text{such that}$$

if
$$a - \delta < x < a$$
,

then f(x) < R.

Def'n:
$$\lim_{x \to a^-} f(x) = -\infty$$
 is read

vertical

asymptote^{*}

the limit of f(x) as x approaches a from the left is equal to negative infinity

and means, intuitively:

if
$$x$$
 is close to a , but less than a , then $f(x)$ is very negative vertical

and means, rigorously:

$$\forall R < 0$$
, $\exists \delta > 0$ such that

if
$$a - \delta < x < a$$
. then $f(x) < R$.

Alternative notation:
$$f(x) \to -\infty$$
 as $x \to a^-$, $\lim_{x \uparrow a} f(x) = -\infty$

Fact:
$$\lim_{x \to a} f(x) = -\infty$$
 iff

both lim
$$f(x) = -\infty$$
 and $\lim_{x \to \infty} f(x) = -\infty$.

Spp

Def'n:
$$\lim_{x \to -\infty} f(x) = -\infty$$
 is read

the limit of f(x) as x approaches negative infinity

is equal to negative infinity

and means, intuitively:

if
$$x$$
 is very negative,

then f(x) is very negative

and means, rigorously:

$$\forall R < 0$$
, $\exists S < 0$ such that

if
$$x < S$$
.

then f(x) < R.

Def'n: $\lim_{x \to -\infty} f(x) = \infty$ is read

the limit of f(x) as x approaches negative infinity is equal to infinity

and means, intuitively:

if x is very negative, then f(x) is very positive

and means, rigorously:

$$\forall R > 0$$
, $\exists S < 0$ such that if $x < S$,

then f(x) > R.

Alternative notation: $f(x) \to \infty$ as $x \to -\infty$

Def'n: $\lim_{x \to \infty} f(x) = \infty$ is read the limit of f(x) as x approaches infinity is equal to infinity and means, intuitively: if x is very positive, then f(x) is very positive and means, rigorously: $\forall R > 0$, $\exists S > 0$ such that

$$\forall R>0,\;\exists S>0\; ext{Such that}$$
 if $x>S,$ then $f(x)>R.$

Alternative notation: $f(x) \to \infty$ as $x \to \infty$

Def'n:
$$\lim_{x \to \infty} f(x) = -\infty$$
 is read

the limit of f(x) as x approaches infinity

is equal to negative infinity

and means, intuitively:

if x is very positive,

then f(x) is very negative

and means, rigorously:

$$\forall R < 0, \exists S > 0 \text{ such that}$$

if
$$x > S$$
,

then f(x) < R.

Alternative notation: $f(x) \to -\infty$ as $x \to \infty$

§4.8, p. 81, Def 4.10: $\lim_{x\to\infty}f(x)=L$ is read the limit of f(x) as x approaches infinity is equal to L

and means, intuitively:

if x is very positive, then f(x) is close to L

and means, rigorously:

Alternative notation: $f(x) \to L$ as $x \to \infty$

Def'n:
$$\lim_{x \to -\infty} f(x) = L$$
 is read

the limit of f(x) as x approaches negative infinity is equal to L

and means, intuitively:

if
$$x$$
 is very negative,
then $f(x)$ is close to L

and means, rigorously:

Alternative notation: $f(x) \to L$ as $x \to -\infty$

SKILL intuitive def'ns of lim