CALCULUS Limit laws

Need to assume that the limits on the RHS exist. Can conclude that the limit on the LHS exists. Tim distributes over addition lim is additive $\lim[(f(x)) + (g(x))] \stackrel{!}{=} [\lim f(x)] + [\lim g(x)]$ $\lim[c(f(x))] = c[\lim(f(x))]$ lim commutes with scalar multiplication "commutes" refers to traveling watch/c and \lim travel. $\dim[c(f(x))]$ "scalar" means number, e.g., 12, 7, $-\pi$, etc. "scalar multiplication" means

multiplication by a (real) number

§2.3 $c^{\prime\prime}$ is a (real) number, not a function or expression

2

cf. §2.3, p. 32, THEOREM 2.7:

Works for $\lim_{x\to a^+}$, $\lim_{x\to a^-}$, $\lim_{x\to a}$, $\lim_{x\to \infty}$, $\lim_{x\to -\infty}$.

cf. §2.3, p. 32, THEOREM 2.7:

Works for $\lim_{x\to a^+}$, $\lim_{x\to a^-}$, $\lim_{x\to a}$, $\lim_{x\to \infty}$, $\lim_{x\to -\infty}$.

Need to assume that the limits on the RHS exist. Can conclude that the limit on the LHS exists.

lim is linear lim distributes over addition lim is additive
$$\lim_{t \to \infty} [f(x)] + [g(x)] = [\lim_{t \to \infty} f(x)] + [\lim_{t \to \infty} g(x)]$$
 and
$$\lim_{t \to \infty} [c(f(x))] = c[\lim_{t \to \infty} f(x)]$$
 lim commutes with scalar multiplication

lim distributes over multiplication lim is multiplicative i.e.:
$$\lim_{t\to \infty} |f(x)| = \lim_{t\to \infty} |f(x)| =$$

lim is linear | Works for | lim Works for | lim Works for | lim distribute:
$$x \to a^+$$
 | $x \to a^-$ | x

lim distributes over multiplication

lim distributes over division

lim is linear lim distributes over multiplication lim distributes over division

CONCLUSIONS:

lim respects linear combination

i.e.:
$$\lim[a(f(x))+b(g(x))] = a[\lim f(x)]+b[\lim g(x)]$$

lim is additive \\

$$[\lim[a(f(x))]] + [\lim[b(g(x))]]$$

Works for

// lim commutes with scalar mult

 $\lim_{x \to a^+}, \lim_{x \to a^-}, \lim_{x \to a},$ $\lim_{x \to \infty}, \lim_{x \to -\infty}.$

Works for

 $\lim_{x \to a^+}$, $\lim_{x \to a^-}$, $\lim_{x \to a}$,

6

lim distributes over multiplication lim distributes over division CONCLUSIONS:

lim is linear

i.e.:
$$\lim_{a \to b} [a(f(x)) + b(a(x))] =$$

i.e.:
$$\lim[a(f(x))+b(g(x))] = a[\lim f(x)]+b[\lim g(x)]$$

coefficients

i.e.:
$$\lim[a(f(x))+b(g(x))] = a[\lim f(x)]+b[\lim g(x)]$$

e.g.: $\lim[5(f(x))-9(g(x))] = 5[\lim f(x)]-9[\lim g(x)]$

EXAMPLE 1:
$$\lim_{x \to -3} f(x) = 4, \quad \lim_{x \to -3} g(x) = -$$

 $\lim_{x \to -3} f(x) = 4, \lim_{x \to -3} g(x) = -2$ Evaluate $\lim_{x \to -3} [(f(x)) + 5(g(x))].$

use linearity of lim

lim is linear lim distributes over multiplication lim distributes over division

 $\lim_{x \to a^+}, \lim_{x \to a^-}, \lim_{x \to a},$

Works for

CONCLUSIONS: lim respects linear combination

i.e.: $\lim [a(f(x)) + b(g(x))] = a[\lim f(x)] + b[\lim g(x)]$

e.g.: $\lim[5(f(x))-9(g(x))] = 5[\lim f(x)]-9[\lim g(x)]$ lim distributes over subtraction (cf. TH'M 2.7, p. 32)

i.e.: $\lim[(f(x)) - (g(x))] = [\lim f(x)] - [\lim g(x)]$ lim comm. with pos. int. powers

i.e.: $\lim [(f(x))^n] = [\lim f(x)]^n$

 $\lim [(f(x))(f(x))^{n-1}] = [\lim f(x)][\lim (f(x))^{n-1}]$ $=\cdots = [\lim f(x)]\cdots [\lim f(x)]$

 $= [\lim f(x)]^n$

lim is linear lim distributes over multiplication lim distributes over division CONCLUSIONS: lim respects linear combination

lim, lim, lim,

Works for

i.e.: $\lim [a(f(x)) + b(g(x))] = a[\lim f(x)] + b[\lim g(x)]$

e.g.: $\lim[5(f(x))-9(g(x))] = 5[\lim f(x)]-9[\lim g(x)]$ lim distributes over subtraction (cf. TH'M 2.7, p. 32)

i.e.: $\lim[(f(x)) - (g(x))] = [\lim f(x)] - [\lim g(x)]$

lim comm. with pos. int. powers *i.e.*: $\lim [(f(x))^n] = [\lim f(x)]^n$ MORE FACTS: constants are continuous at every real i.e.: $\lim_{x \to a} c = c$

the identity is continuous

Def'n 2.18, p. 42: f is **continuous** at a $\lim_{x \to a} f(x) = f(a).$ $f:\rightarrow \mathsf{const} \mathsf{fn} \mathsf{with} \mathsf{value} c$

8

Def'n: The identity is the function $\iota:\mathbb{R} \to \mathbb{R}$ def'd by $\iota(x) = x$.

lim distributes over multiplication lim distributes over division CONCLUSIONS: lim respects linear combination

lim is linear

lim, lim, lim, $x{\rightarrow}a^+$ $x{\rightarrow}a^-$

Works for

i.e.: $\lim [a(f(x))+b(g(x))] = a[\lim f(x)]+b[\lim g(x)]$

e.g.: $\lim[5(f(x))-9(g(x))] = 5[\lim f(x)]-9[\lim g(x)]$ lim distributes over subtraction (cf. TH'M 2.7, p. 32)

i.e.: $\lim[(f(x)) - (g(x))] = [\lim f(x)] - [\lim g(x)]$ lim comm. with pos. int. powers *i.e.*: $\lim [(f(x))^n] = [\lim f(x)]^n$ constants are continuous

Def'n 2.18, p. 42: f is **continuous** at aif $\lim_{x \to a} f(x) = f(a)$. $\lim_{x \to \infty} x = \infty, \quad \lim_{x \to -\infty}$

at every real $\lim c = c$ the identity is continuous at every real *i.e.*: $\lim x = a$

MORE FACTS:

Def'n: The **identity** is the function $\iota:\mathbb{R}\to\mathbb{R}$ def'd by $\iota(x) = x$.

lim is linear lim distributes over multiplication lim distributes over division lim respects linear combination lim distributes over subtraction lim respects linear combination constants are continuous

Def'n 2.18, p. 42: f is continuous at aif $\lim_{x\to a} f(x) = f(a)$.

the identity is continuous

pos. int. powers of continuous
functions are again contin.

lim distributes over subtraction

lim comm. with pos. int. powers

Def'n 2.18, p. 42: f is continuous at aif $\lim_{x \to a} f(x) = f(a)$.

constants are continuous

the identity is continuous

lim is linear lim distributes over multiplication lim distributes over division lim respects linear combination lim distributes over subtraction lim comm. with pos. int. powers constants are continuous

the identity is continuous

Def'n 2.18, p. 42: f is continuous at aif $\lim_{x\to a} f(x) = f(a)$.

pos. int. powers of contin. functions are again contin.

Proof:

Know:
$$\lim_{x \to a} f(x) = f(a)$$

Want:
$$\lim_{x \to a} [f(x)]^n \stackrel{\text{\tiny 2}}{=} [f(a)]^n$$

/

 $\left[\lim_{x\to a} f(x)\right]^n$

QED

lim is linear lim distributes over multiplication lim distributes over division lim respects linear combination lim distributes over subtraction lim comm. with pos. int. powers constants are continuous

Defin 2.18, p. 42: f is continuous at aif $\lim_{x\to a} f(x) = f(a)$.

the identity is continuous

MORE FACTS:

pos. int. powers of contin.
functions are again contin.

pos. int. powers are continuous

i.e.:
$$\lim_{x \to a} x^n = a^n$$

pos. int. roots are continuous at every real (odd roots) at every pos. real (even roots) i.e.: $\lim_{n \to \infty} \sqrt[n]{x} = \sqrt[n]{a}$ (If n is even, we assume that: a > 0.)

Pf: Want:
$$\lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a}$$
 (If n is even, we assume that: $a > 1$)
$$\lim_{x \to a} \sqrt[n]{x} = \lim_{x \to a} \sqrt[n]{a}$$
 QED
$$\lim_{x \to a} \sqrt[n]{x} = \lim_{x \to a} \sqrt[n]{a}$$
 ($\sqrt[n]{a}$) $\lim_{x \to a} \sqrt[n]{x} = \lim_{x \to a} \sqrt[n]{a}$

lim distributes over multiplication lim distributes over division lim respects linear combination lim distributes over subtraction lim comm. with pos. int. powers

Def'n 2.18, p. 42: f is **continuous** at aif $\lim_{x \to a} f(x) = f(a)$.

constants are continuous the identity is continuous MORE FACTS:

lim is linear

pos. int. powers of contin. functions are again contin. sin is continuous at every real

pos. int. powers are continuous i.e.: $\lim_{r \to a} x^n = a^n$

pos. int. roots are continuous at every real (odd roots) at every pos. real (even roots) i.e.: $\lim_{x\to a} \sqrt[n]{x} = \sqrt[n]{a}$ (If n is even, we assume that: a > 0.)

e.g.:
$$\lim_{x \to 7} \left[\sin \left(x^2 \right) \right] = \sin \left(\lim_{x \to 7} x^2 \right) = \sin(49)$$

THEOREM (fn↔lim):

lan expressiones with fns inside a function ntinuity f continuous at $\lim g(x) \Rightarrow \lim f(g(x)) = f(\lim g(x))$.

lim distributes over multiplication lim distributes over division lim respects linear combination lim distributes over subtraction lim comm. with pos. int. powers constants are continuous

Def'n 2.18, p. 42: f is **continuous** at aif $\lim_{x \to a} f(x) = f(a)$.

the identity is continuous

pos. int. powers of contin. functions are again contin.

sin is continuous

at every real

MORE FACTS:

pos. int. powers are continuous i.e.: $\lim_{r \to a} x^n = a^n$

pos. int. roots are continuous at every real (odd roots) at every pos. real (even roots)

lim is linear

i.e.: $\lim_{n \to \infty} \sqrt[n]{x} = \sqrt[n]{a}$ (If n is even, we assume that: a > 0.) lim commutes with roots $\lim \sqrt[n]{g(x)} = \sqrt[n]{\lim g(x)}$ (If n is even, we assume that: $\lim g(x) > 0$.)

THEOREM (fn↔lim):

Im commutes with fns at pts of continuity f continuous at $\lim g(x) \Rightarrow \lim f(g(x)) = f(\lim g(x))$.

lim is linear lim distributes over multiplication lim distributes over division lim respects linear combination lim distributes over subtraction lim comm. with pos. int. powers Def: A polynomial in \boldsymbol{x} constants are continuous the identity is continuous pos. int. powers are continuous pos. int. powers are continuous

Def'n 2.18, p. 42: f is **continuous** at aif $\lim_{x \to a} f(x) = f(a)$.

is a finite linear comb. of 1, x, x^2 , ...

lim is linear lim distributes over multiplication lim distributes over division lim respects linear combination lim distributes over subtraction lim comm. with pos. int. powers Def: A polynomial in \boldsymbol{x} constants are continuous

pos. int. powers are continuous

the identity is continuous

Def'n 2.18, p. 42: f is **continuous** at aif $\lim_{x \to a} f(x) = f(a)$.

is a finite linear comb.

of 1, x, x^2 , ... *e.g.*: $5 + 3x - 2x^2$ $4 + x^{1,000,000}$ $3 + 5x^2 - 19x^5$

Defs: polynomial in t polynomial in upolynomial in q etc. polynomial

e.g.: $5 + 3 ● -2 ● ^{2}$

 $4 + \bullet^{1,000,000}$ $3 + 5 \bullet^2 - 19 \bullet^5$

lim is linear lim distributes over multiplication lim distributes over division lim respects linear combination lim distributes over subtraction lim comm. with pos. int. powers Def: A polynomial in \boldsymbol{x} constants are continuous the identity is continuous pos. int. powers are continuous

Def'n 2.18, p. 42: f is **continuous** at aif $\lim_{x \to a} f(x) = f(a)$.

is a finite linear comb. of 1, x, x^2 , ...

Defs: **polynomial** in t polynomial in upolynomial in q etc. polynomial

Def: A rational fn is a quotient of two polys. polynomial in q etc. polynomial

lim is linear lim distributes over multiplication lim distributes over division lim respects linear combination lim distributes over subtraction lim comm. with pos. int. powers D

Def'n 2.18, p. 42: f is continuous at aif $\lim_{x\to a} f(x) = f(a)$. ef: A polynomial in xis a finite linear comb.

lim comm. with pos. int. powers Def: A polynomial in x constants are continuous the identity is continuous pos. int. powers are continuous of $1, x, x^2, \ldots$ Defs: polynomial in t

of 1, x, x^2 , ...

Defs: polynomial in tpolynomial in upolynomial in qetc. polynomial

Def: A rational fn is a quotient of two polys.

Defs: rat'l expr. of t

e.g.: $\frac{5+3x-2x^2}{4+x^{1,000,000}}$ $7+2t^9+4t^{10}$

 $\left[\frac{4}{w} - \frac{2w^2 - 7w}{w^7}\right] / \left[\frac{7}{w^3} - \frac{(1+w)(2w^2 - 7w)}{w^7}\right]$ rat'l expr. of v rat'l expr. of v rat'l expr. of v rat'l expr. of v etc.

§2.3

(1-t)(4+t)

lim is linear lim distributes over multiplication lim distributes over division lim respects linear combination lim distributes over subtraction lim comm. with pos. int. powers Def: A polynomial in xconstants are continuous the identity is continuous

pos. int. powers are continuous any polynomial is continuous. (at all real numbers) any rational fn is continuous.

(at numbers in its domain) FACT: (Polys and rat'l fns are contin) If f is a polynomial or rational function, and if $a \in \text{dom}[f]$,

then $\lim_{x \to a} f(x) = f(a)$.

f is **continuous** at aif $\lim_{x \to a} f(x) = f(a)$. is a finite linear comb.

Def'n 2.18, p. 42:

of 1, x, x^2 , ... Defs: polynomial in t polynomial in upolynomial in q etc. polynomial

Def: A rational fn is a quotient of two polys. Defs: rat'l expr. of t rat'l expr. of v

rat'l expr. of b rat'l expr. of xetc.

Next: Determinate and indeterminate forms. . .

$$\frac{1}{10^6} \approx 0$$
The form determines the answer

The form determines the answer.

Form of answer:
$$\frac{1}{\infty} = 0$$
determinate form

determinate form

Problem: Evaluate
$$\lim_{x \to \infty} \frac{1}{x}$$
.

$$\lim_{x \to \infty} x = 0$$

20

Solution:
$$\lim_{x \to \infty} \frac{1}{x} = 0$$

$$\text{lim}\, f(x) = -\infty \qquad \Rightarrow \qquad \lim rac{1}{f(x)} = 0$$

Works for
$$\lim_{x\to a^+}$$
, $\lim_{x\to a^-}$, $\lim_{x\to a}$, $\lim_{x\to \infty}$, $\lim_{x\to -\infty}$. $\lim_{x\to a^+} f(x) = \infty \Rightarrow \lim_{x\to a^+} \frac{1}{f(x)} = 0$

$$(1/(0^{-}) = -\infty)$$

WARNING: "1/0 is NOT always
$$\infty$$
"

"1/0 is indeterminate"

slightly

$$\lim_{x\to 0^+} \frac{1}{x} = \infty$$

$$\lim_{x\to 0} \frac{1}{x} \quad \text{DNE}$$

$$\lim_{x\to 0} \frac{1}{x} = -\infty$$

$$\lim f(x) = -\infty \quad \Rightarrow \quad \lim \frac{1}{f(x)} = 0$$

Works for $\lim_{x\to a^+}$, $\lim_{x\to a^-}$, $\lim_{x\to a}$, $\lim_{x\to \infty}$, $\lim_{x\to -\infty}$.

$$\lim f(x) = \infty \quad \Rightarrow \quad \lim \frac{1}{f(x)} = 0$$

 $x \rightarrow 0^- x$

$$\lim_{x\to a^+} f(x) = \infty$$

$$\lim_{x\to a^+} f(x) = 0$$

$$\lim_{x\to a^+} \frac{1}{f(x)} = \infty$$

$$\lim_{x\to a^+} \frac{1}{f(x)} = 0$$

$$\lim f(x) = \infty \quad \Rightarrow \quad \lim \frac{1}{f(x)} = 0$$

$$\lim_{x\to 0} f(x) = 0 \xrightarrow{+} \lim_{x\to 0} \frac{1}{f(x)} = \infty$$

$$\lim_{x\to 0} f(x) = 0 \xrightarrow{+} \lim_{x\to 0} \frac{1}{f(x)} = \infty$$

$$\lim_{x\to 0} x^2 = 0 \xrightarrow{+}, \text{ so } \lim_{x\to 0} \frac{1}{x^2} = \infty$$

$$\lim_{x\to 0} f(x) = L^{\underset{-}{\text{nonstandard}}} \text{ intuitively:}$$

$$\lim_{x\to a^+} f(x) = L^{\underset{-}{\text{nonstandard}}} \text{ intuitively:}$$

$$\lim_{x\to 0} f(x) = L^{\underset{-$$

$$\lim_{x\to a^+} f(x) = L^{-} \text{ means, intuitively:}$$
 if x is close to a , but greater than a ,

then f(x) is close to L, but less than L,

and means, rigorously:
$$\forall \varepsilon > 0, \ \exists \delta > 0 \ \text{s.t.} \quad a < x < a + \delta \quad \Rightarrow \quad L - \varepsilon < f(x) < L.$$

$$``\infty \cdot \infty = \infty" \qquad ``\infty + 5 = \infty" \quad \text{MORE} \\ ``\infty \cdot (-\infty) = -\infty" \qquad ``\infty - 7 = \infty" \quad \text{DETERMINATE} \\ ``\infty - 7 = \infty" \quad \text{AND}$$

" $\infty \cdot \infty = \infty$ " " $\infty + 5 = \infty$ " MORE
" $\infty \cdot (-\infty) = -\infty$ " " $\infty - 7 = \infty$ " INDETERMINATE
" $(-\infty) \cdot \infty = -\infty$ " " $\infty + c = \infty$ " FORMS
" $(-\infty) \cdot (-\infty) = \infty$ " " $(-\infty) + c = -\infty$ "

$$"1/(0^{+}) = \infty"$$

$$"6 \cdot \infty = \infty"$$

$$"\sqrt{\infty} = \infty"$$

$$"3 \cdot \infty = \infty"$$

$$"(-3) \cdot \infty = -\infty"$$

$$"c > 0 \Rightarrow c \cdot \infty = \infty"$$

$$"c < 0 \Rightarrow c = \infty$$

$$"c < 0 \Rightarrow c \cdot \infty = -\infty"$$

$$``\infty\cdot\infty=\infty"$$
 $``\infty\cdot(-\infty)=-\infty"$
DETERMINATE
AND
AND

$$\text{``}\infty\cdot(-\infty) = -\infty\text{''}$$

$$\text{``}(-\infty)\cdot\infty = -\infty\text{''}$$

$$\text{``}\infty+c=\infty\text{''}$$

$$\text{FORMS}$$

 $\operatorname{Spp}''(-\infty) \cdot (-\infty) = \infty'' \quad "(-\infty) + c = -\infty"$

$$"1/(0^{+}) = \infty" "1/(0^{-}) = -\infty"$$

$$"\sqrt{\infty} = \infty" "c > 0 \Rightarrow c \cdot (-\infty) = -\infty"$$

$$\lim_{x \to \infty} (1/x^{2})(x) = 0 "c < 0 \Rightarrow c \cdot (-\infty) = \infty"$$

$$\lim_{x \to \infty} (1/x^{2})(x^{2}) = 1 "c > 0 \Rightarrow c \cdot \infty = \infty"$$

$$\lim_{x \to \infty} (1/x^{2})(x^{3}) = \infty "c < 0 \Rightarrow c \cdot \infty = -\infty"$$

$$"0 \cdot \infty \text{ and } 0 \cdot (-\infty) \text{ are indeterminate"}$$

$$\lim_{x \to \infty} (-1/x^{2})(-x) = 0$$

$$\lim_{x \to \infty} (-1/x^{2})(-x^{2}) = 1$$

$$"1/(0^{+}) = \infty" \qquad "1/(0^{-}) = -\infty"$$

$$"e^{\infty} = \infty" \qquad "e^{-\infty} = 0"$$

$$"1n(\infty) = \infty" \qquad "c > 0 \Rightarrow c \cdot (-\infty) = -\infty"$$

$$"(0^{+})^{\infty} = 0" \qquad "c < 0 \Rightarrow c \cdot (-\infty) = \infty"$$

$$"1^{\pm \infty} \text{ is indet.}" \qquad "c > 0 \Rightarrow c \cdot \infty = \infty"$$

$$"(0^{+})^{0}, \infty^{0} \text{ indet.}" \qquad "c < 0 \Rightarrow c \cdot \infty = -\infty"$$

$$"(0^{+})^{0}, \infty^{0} \text{ indet.}" \qquad "c < 0 \Rightarrow c \cdot \infty = -\infty"$$

$$"0 \cdot \infty \text{ and } 0 \cdot (-\infty) \text{ are indeterminate}"$$

$$"0/0, \infty/\infty, (-\infty)/\infty, \infty/(-\infty), (-\infty)/(-\infty)$$

$$"l'Hôpital indeterminate forms" all indeterminate"$$

$$"\infty \cdot \infty = \infty" \qquad \text{DETERMINATE}$$

$$"\infty \cdot (-\infty) = -\infty" \qquad "\infty + c = \infty"$$

$$"(-\infty) \cdot \infty = -\infty" \qquad "\infty + c = \infty"$$

$$"(-\infty) \cdot (-\infty) = \infty" \qquad "(-\infty) + c = -\infty"$$

$$"1/(0^+) = \infty" \qquad "1/(0^-) = -\infty" \\ "(-\infty) + (-\infty) = -\infty" \\ "e^\infty = \infty" \qquad "e^{-\infty} = 0" \qquad "\infty + \infty = \infty" \\ "\ln(\infty) = \infty" \qquad "\infty - \infty \text{ is indeterminate"} \\ "\sqrt{\infty} = \infty" \qquad "c > 0 \Rightarrow c \cdot (-\infty) = -\infty" \\ "(0^+)^\infty = 0" \qquad "c < 0 \Rightarrow c \cdot (-\infty) = \infty" \\ "1^{\pm\infty} \text{ is indet."} \qquad "c > 0 \Rightarrow c \cdot \infty = \infty" \\ "(0^+)^0, \infty^0 \text{ indet."} \qquad "c < 0 \Rightarrow c \cdot \infty = \infty" \\ "(0^+)^0, \infty^0 \text{ indet."} \qquad "c < 0 \Rightarrow c \cdot \infty = -\infty" \\ "0/0, \infty/\infty, (-\infty)/\infty, \infty/(-\infty) \text{ are indeterminate"} \\ "0/0, \infty/\infty, (-\infty)/\infty, \infty/(-\infty), (-\infty)/(-\infty) \\ "l'Hôpital indeterminate forms" all indeterminate" \\ "\infty \cdot \infty = \infty" \qquad \text{DETERMINATE AND INDETERMINATE AND INDETERM$$

$$"1/(0^+) = \infty" \qquad "(-\infty) + \infty \text{ if } 1/(0^-) = -\infty" \text{ if } 1/(0^-)$$

TH'M (left montonicity of limit):

If, for some $\delta > 0$,

$$f(x) \le g(x)$$
 on $a - \delta < x < a$,

Any smaller positive number would work for δ , too.

TH'M (left montonicity of limit):

If, for some $\delta > 0$, $f(x) \le g(x)$ on $a - \delta < x < a$,

Any smaller positive number would work for δ , too.

Exercise: right monotonicity
Next: two-sided monotonicity

No larger positive number would work for δ .

TH'M (monotonicity of limit):

If, for some $\delta>0$, punctured δ -nbd of a $f(x)\leq g(x)$ on $x\in (a-\delta,a+\delta)\backslash\{a\}$, then $\lim_{x\to a}f(x)\leq \lim_{x\to a}g(x)$, provided both of these limits exist.

TH'M (monotonicity of limit):

If, for some $\delta > 0$,

$$f(x) \leq g(x)$$
 on $x \in (a - \delta, a + \delta) \setminus \{a\}$, then $\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x)$,

provided both of these limits exist.

$$L = \lim_{x \to a} f(x) \le \lim_{x \to a} g(x) \le \lim_{x \to a} h(x) = L$$

Pf is a little harder. (We omit it.)

 $\S4.3$, p. 67: THEOREM $4/\overline{1}$ (squeeze th m)

If, for some $\delta > 0$,

 $f(x) \leq g(x) \leq h(x)$ on $x \in (a-\delta, a+\delta) \setminus \{a\}$, and if $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$,

then $\lim_{x \to a} g(x) = L'$.

not needed: assuming $\lim_{x\to a} g(x)$ exists

34

§4.3, p. 67: THEOREM 4.1 (squeeze th'm)

If, for some $\delta > 0$, $f(x) \leq g(x) \leq h(x) \quad \text{on} \quad x \in (a-\delta,a+\delta) \backslash \{a\},$ and if $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$,
then $\lim_{x \to a} g(x) = L$.

35

Exercise: left and right squeeze theorem

Fact: If $\phi = \psi$ on a punctured nbd of a,

then
$$\lim_{x \to a} \phi(x) = \lim_{x \to a} \psi(x)$$
, provided the RHS exists.

Proof:
$$\psi(x) \le \phi(x) \le \psi(x)$$
 on $x \in (a - \delta, a + \delta) \setminus \{a\}$, so $\lim_{x \to a} \phi(x) = \lim_{x \to a} \psi(x)$. QED §4.3, p. 67: THEOREM 4.1 (squeeze th m)

If, for some $\delta > 0$ $f(x) \le g(x) \le h(x)$ on $x \in (a-\delta, a+\delta) \setminus \{a\}$, and if $\lim_{x \to a} f(x) \neq \lim_{x \to a} h(x) = L$

then $\lim_{x \to a} g(x) = L$

$$\lim_{x \to a} h(x)$$

Fact: If $\phi = \psi$ on a punctured nbd of ρ ,

then
$$\lim_{x \to a} \phi(x) = \lim_{x \to a} \psi(x)$$
,

provided the RHS exists.

Proof: $\psi(x) \le \phi(x) \le \psi(x)$ on $x \in (a - \delta, a + \delta) \setminus \{a\}$, so $\lim_{x \to a} \phi(x) = \lim_{x \to a} \psi(x)$.

37

If $\phi = \psi$ on a punctured nbd of a, Fact:

then
$$\lim_{x\to a}\phi(x)=\lim_{x\to a}\psi(x)$$
, provided the RHS exists.

Fact: If $\phi = \psi$ on a punctured nbd of a, then $\lim_{x \to a} \phi(x) = \lim_{x \to a} \psi(x)$, provided the RHS exists.

lim diff quot

SKILL EXAMPLE: Find $\lim_{h\to 0} \frac{(3+h)^2 - 9}{h}$

$$\frac{(3+h)^2 - 9}{h} = \frac{(8+6h+h^2) - 8}{h} = 6+h$$

$$\lim_{h\to 0} 6 + h = [6+h]_{h:\to 0} = 6$$
polynomial in h ,
so continuous

$$x :\rightarrow h, a :\rightarrow 0$$

Fact: If
$$\phi = \psi$$
 on a punctured nbd of a , then $\lim_{x \to a} \phi(x) = \lim_{x \to a} \psi(x)$,

$$x \rightarrow a$$
 $x \rightarrow a$ provided the RHS exists.

SKILL lim diff quot

EXAMPLE: Find $\lim_{h\to 0} \frac{(3+h)^2 - 9}{h}$

$$\frac{(3+h)^2 - 9}{h} = \frac{(\mathscr{S} + 6h + h^2) - \mathscr{S}}{h} \stackrel{h \neq 0}{=} 6 + h$$

$$\frac{(3+h)^2 - 9}{h} = \lim_{h \to 0} \frac{(3+h)^2 - 9}{h} = \lim_{h \to 0} \frac{6+h}{h} = [6+h]_{h:\to 0} = 6$$

$$\lim_{h \to 0} \frac{(3+h)^2 - 9}{h} = \lim_{h \to 0} \frac{6+h}{h} = [6+h]_{h:\to 0} = 6$$

$$\lim_{h \to 0} \frac{(3+h)^2 - 9}{h} = \lim_{h \to 0} \frac{6+h}{h} = \frac{6+h}{h} = \frac{6}{h}$$

Fact: If
$$\phi = \psi$$
 on a punctured nbd of 0, then $\lim_{h\to 0} \phi(h) = \lim_{h\to 0} \psi(h)$,

provided the RHS exists.

§2.3

SKILL Compute limits Whitman problems §2.3, p. 34, #1-15

SKILL Limits from gph Whitman problems §2.3, p. 35, #18 SKILL
Oscillatory limit
Whitman problems
§2.3, p. 35, #16

SKILL
Calculator estimation
of limits
Whitman problems
§2.3, p. 35, #19

SKILL Find δ Whitman problems $\S 2.3$, p. 35, # 17

