CALCULUS The derivative of a function is a function

The derivative of a function fis the function f' defined by

$$f'(x) = \lim_{h \to 0} \frac{[f(x+h)] - [f(x)]}{h}$$

$$= \lim_{u \to x} \frac{[f(u)] - [f(x)]}{u - x}.$$

$$f' \text{ has all of the slopes of all of the tangent lines of } f$$

DEFINITION 2.18, §2.5, p. 42:

e.g.: The slope of the tangent line

of the graph of f at (7, f(7)) is: f'(7)

The derivative of a function f at a number a, denoted by f'(a), is $\lim_{h\to 0} \frac{[f(a+h)]-[f(a)]}{h}$ $= \lim_{u \to a} \frac{[f(u)] - [f(a)]}{u - a}.$

The derivative of a function f is the function f' defined by

$$f'(x) = \lim_{h \to 0} \frac{[f(x+h)] - [f(x)]}{h}.$$

Note: $dom[f'] \subseteq dom[f]$, but they may not be equal.

The derivative of a function fis the function f' defined by

$$f'(x) = \lim_{h \to 0} \frac{[f(x+h)] - [f(x)]}{h}.$$

Note: $dom[f'] \subseteq dom[f]$, but they may not be equal.

cf. DEFINITION 2.20, §2.5, p. 42:

We say f is differentiable at a if $a \in dom[f']$,

i.e., if
$$f'(a)$$
 exists, i.e., if $\lim_{h\to 0} \frac{[f(a+h)]-[f(a)]}{h}$ exists. cf. DEFINITION 2.20, §2.5, p. 42:

We say f is differentiable if dom[f] = dom[f'], i.e., if f is differentiable at every number in its domain. The derivative of a function fis the function f' defined by

$$f'(x) = \lim_{h \to 0} \frac{[f(x+h)] - [f(x)]}{h}$$

e.g.:
$$f(x) = x^2$$
, $f'(x) = ??$
 $f(x+h) = (x+h)^2$
 $= x^2 + 2xh + h^2$

SUBTRACT
$$f(x) = x^2$$

 $[f(x+h)] - [f(x)] = 2xh + h^2$

 $\frac{[f(x+h)] - [f(x)]}{h} = 2x + h \to 2x = f'(x)$ $h \neq 0$ $h \rightarrow 0$

"h" :
$$\rightarrow$$
 "chgtox"? No, too long. Old school: $chgtox \neq c \cdot h \cdot g \cdot t \cdot o \cdot x$ " \triangle " for "chg

EXPR. OF x AND h

EXPR. OF x ALONE

" \triangle " for "chgto" $chgtox \neq c \cdot h \cdot g \cdot t \cdot o \cdot x$ Old school: Replace "h" by " $\triangle x$ " ...

The derivative of a function fis the function |f'| defined by

$$f'(x) = \lim_{\triangle x \to 0} \frac{[f(x + \triangle x)] - [f(x)]}{\triangle x}$$

e.g.:
$$f(x) = x^2$$
, $f'(x) = ??$
 $f(x + \triangle x) = (x + \triangle x)$

$$f(x + \triangle x) = (x + \triangle x)^2$$
$$= x^2 + 2x(\triangle x)$$

 $f(x) = x^2$ **SUBTRACT**

$$[f(x + \triangle x)] - [f(x)] = 2x(\triangle x) + (\triangle x)^2$$

$$(\Delta x)$$
] - [f

$$\frac{[f(x + \triangle x)] - [f(x)]}{\triangle x} = 2x + \triangle x \rightarrow 2x = f'(x)$$

 $\triangle x$ $\triangle x \neq 0$ $\triangle x \rightarrow 0$ "h" by "chqtox"? No, too long. Old school:

$$chgtox \neq c \cdot h \cdot g \cdot t \cdot o \cdot x$$
 " \triangle " for " $chgto$ " Old school: Replace " h " by " $\triangle x$ " . . .

 $= x^2 + 2x(\triangle x) + (\triangle x)^2$

EXPR. OF x AND $\triangle x$

 $\mathbf{\overline{\ }}$ EXPR. OF x ALONE

The derivative of $(\bullet)^2$ is $2(\bullet)$, *i.e.*, $[(\bullet)^2]' = 2(\bullet)$.

The derivative of
$$x^2$$
 w.r.t. x is $2x$, i.e., $\frac{d}{dx}[x^2] = 2x$.

e.g.:
$$f(x) = x^2$$
, $f'(x) = ??$
 $f(x + \triangle x) = (x + \triangle x)^2$
 $= x^2 + 2x(\triangle x) + (\triangle x)^2$

SUBTRACT
$$f(x) = x^2$$

 $[f(x + \triangle x)] - [f(x)] = 2x(\triangle x) + (\triangle x)^2$

$$\frac{[f(x+\triangle x)]-[f(x)]}{\triangle} = 2x+\triangle x \rightarrow 2x = f'(x)$$

$$\frac{-2x + \Delta x}{\Delta x \neq 0} \xrightarrow{\Delta x \to 0} x = f(x)$$
"h" by "chgtox"? No, too long. Old school:

The derivative of $(\bullet)^2$ is $2(\bullet)$, *i.e.*, $[(\bullet)^2]' = 2(\bullet)$.

The derivative of x^2 w.r.t. x is 2x, i.e., $\frac{d}{dx}[x^2] = 2x$.

e.g.:
$$y = x^2$$
, $\frac{dy}{dx} = ??$

$$[y]_{x:\to x + \Delta x} = (x + \Delta x)^2$$

$$= x^2 + 2x(\Delta x) + (\Delta x)^2$$

$$y = x^2$$

$$\Delta y = ([y]_{x:\to x + \Delta x}) - y = 2x(\Delta x) + (\Delta x)^2$$

No, too long.
Old school:

"chgtoy"?

" \triangle " for "chgto"

The derivative of $(\bullet)^2$ is $2(\bullet)$, *i.e.*, $[(\bullet)^2]' = 2(\bullet)$.

The derivative of
$$x^2$$
 w.r.t. x is $2x$, i.e., $\frac{d}{dx}[x^2] = 2x$.

e.g.:
$$y = x^2$$
, $\frac{dy}{dx} = ??$

$$[y]_{x:\to x+\triangle x} = (x+\triangle x)^2$$

$$= x^2 + 2x(\triangle x) + (\triangle x)^2$$

$$= y = x^2$$

$$\Delta y = ([y]_{x:\to x+\triangle x}) - y = 2x(\triangle x) + (\triangle x)^2$$

$$\Delta y = ([y]_{x: \to x + \triangle x}) - y = 2x(\triangle x) + (\triangle x)^{2}$$

$$\frac{y}{x} \neq \frac{\triangle y}{\triangle x} = 2x + \triangle x$$

The derivative of $(\bullet)^2$ is $2(\bullet)$, *i.e.*, $[(\bullet)^2]'=2(\bullet)$.

The derivative of x^2 w.r.t. x is 2x, i.e., $\frac{d}{dx}[x^2] = 2x$.

e.g.:
$$y = x^2$$
, $\frac{dy}{dx} = ??$

$$[y]_{x:\to x + \triangle x} = (x + \triangle x)^2$$

$$= x^2 + 2x(\triangle x) + (\triangle x)^2$$

SUBTRACT
$$y = x^2$$

$$\triangle y = \overline{([y]_{x:\to x+\triangle x}) - y} = 2x(\triangle x) + (\triangle x)^2$$

$$\xrightarrow{\text{EXPR. OF}} \xrightarrow{\triangle y} = 2x + \triangle x \to 2x = \frac{dy}{dx}$$

NOTE:
$$\lim_{\triangle x \to 0} \frac{\triangle y}{\triangle x} = \frac{dy}{dx}$$
 EXPR. OF x ALONE

cf. §2.2, p. 25: Let y=f(x).

Then $\triangle y$ is the traditional notation for $[f(x+\triangle x)]-[f(x)],$ i.e., $\triangle y=([y]_{x:\to x+\triangle x})-y$ which is an expression of TWO variables: x and $\triangle x$.

Note: Some people are uncomfortable with a variable whose name involves two-symbols, like " $\triangle x$ ", so most modern treatments of calculus replace " $\triangle x$ " by "h", and avoid using " $\triangle y$ ".

NOT US!! ...

cf. §2.2, p. 25: Let y = f(x).

Then $\triangle y$ is the traditional notation for $[f(x+\triangle x)]-[f(x)],$ i.e., $\triangle y=([y]_x: \rightarrow x+\triangle x)-y$

which is an expression of TWO variables: x and $\triangle x$.

$$f'(x) = \lim_{h \to 0} \frac{[f(x+h)] - [f(x)]}{h}$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{[f(x+\Delta x)] - [f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$
an expression of x alone $\frac{dy}{dx}$

 $\S 2.2$ same idea for expressions of t . . .

cf. §2.2, p. 25: Let y = f(t).

Same idea for any independent

Then $\triangle y$ is the traditional notation for $[f(t + \triangle t)] - [f(t)]$, i.e., $\triangle y = ([y]_{t: \to t + \triangle t}) - y$

which is an expression of **TWO** variables: t and $\triangle t$.

and dependent variables $y \mapsto r$

$$f'(t) = \lim_{h \to 0} \frac{[f(t+h)] - [f(t)]}{h}$$

$$f'(t) = \lim_{\Delta t \to 0} \frac{[f(t+\Delta t)] - [f(t)]}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta y}{\Delta t}$$
an expression of t alone $\frac{dy}{dt}$.

cf. §2.2, p. 25: Let r = f(t).

Same idea for any independent

Then $\triangle r$ is the traditional notation for $[f(t + \triangle t)] - [f(t)]$,

i.e., $\triangle r = ([r]_{t: \rightarrow t + \triangle t}) - r$

which is an expression of **TWO** variables: t and $\triangle t$.

and dependent variables.

$$f'(t) = \lim_{h \to 0} \frac{[f(t+h)] - [f(t)]}{h}$$

$$f'(t) = \lim_{\Delta t \to 0} \frac{[f(t+\Delta t)] - [f(t)]}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta r}{\Delta t}$$
an expression of t alone $\frac{dr}{dt}$.

Let $r := \sqrt{t}$.

 $\triangle r = \sqrt{t + \triangle t} - \sqrt{t}$

Goal:

 $\frac{dr}{dt} = \frac{1}{2\sqrt{t}} \quad \text{Find deriv from the def'n}$ CALCULUS is all about

 $\frac{d}{dt}[\sqrt{t}] = \frac{1}{2\sqrt{t}}$

 $\frac{\sqrt{t+\triangle t}-\sqrt{t}}{1}\,\frac{\sqrt{t+\triangle t}+\sqrt{t}}{\sqrt{t+\triangle t}+\sqrt{t}}$

 $= \frac{(t + \triangle t) - t}{\sqrt{t + \triangle t} + \sqrt{t}}$

 $\sqrt{t+\triangle t}+\sqrt{t}$

learning to do calculations like this quickly and algorithmically.

15

 $\sqrt{t + \triangle t} + \sqrt{t} \ \overrightarrow{\triangleright} \ \sqrt{t + \sqrt{t}}$ Back to x and y... Let $y := \sqrt{x}$.

Goal:

learning to do calculations $\triangle y = \sqrt{x + \triangle x} - \sqrt{x}$ like this quickly and

$$= \frac{\sqrt{x + \triangle x} - \sqrt{x}}{1} \frac{\sqrt{x + \triangle x} + \sqrt{x}}{\sqrt{x + \triangle x} + \sqrt{x}}$$

 $\sqrt{x+\Delta x}+\sqrt{x}$

algorithmically.
$$\frac{\Box \Delta x + \sqrt{x}}{\Box \Delta x + \sqrt{x}}$$

$$= \frac{\cancel{(x + \triangle x)} - \cancel{x}}{\sqrt{x + \triangle x} + \sqrt{x}}$$

$$= \frac{\cancel{(x + \triangle x)} - \cancel{x}}{\sqrt{x + \triangle x} + \sqrt{x}}$$

$$= \frac{\cancel{(x + \triangle x)} - \cancel{x}}{\sqrt{x + \triangle x} + \sqrt{x}}$$

$$= \frac{\cancel{(x + \triangle x)} - \cancel{x}}{\sqrt{x + \triangle x} + \sqrt{x}}$$

$$= \frac{\cancel{(x + \triangle x)} - \cancel{x}}{\sqrt{x + \triangle x} + \sqrt{x}}$$

$$= \frac{\cancel{(x + \triangle x)} - \cancel{x}}{\sqrt{x + \triangle x} + \sqrt{x}}$$

 $=\frac{\mathbf{x}-(\mathbf{x}+\triangle x)}{(x+\triangle x)x}$ $(x + \triangle x)x$

Let y :=

 $\triangle y = ([y]_{x: \to x + \triangle x}) - y$

 $x + \triangle x$

the def'n

$$\frac{\triangle y}{\triangle x} = \frac{-1}{(x + \triangle x)x}$$

$$\frac{\triangle x}{\triangle x} = \frac{-1}{(x + \triangle x)x}$$
Let $\triangle x = -1$
I: Equation of the tangent line to

We need ONE slope of

Goal:

$$y = 1/x \text{ at } (2.1/2).$$
WRONG: $y - \frac{1}{2} = -\frac{1}{x^2}(x-2)$

$$-\frac{1}{x^2} \text{ has all slopes of all tangent lines.}$$

ONE tangent line.

 $\overline{(x+0)}x$

find slope of tan line

DIVIDE BY $\triangle x$

Let
$$y:=\frac{1}{x}$$
. Goal: $\frac{dy}{dx}=\frac{1}{(x+0)x}=-\frac{1}{x^2}$

$$\triangle y=([y]_{x:\to x+\triangle x})-y \qquad \frac{\triangle y}{\triangle x} \qquad \frac{-1}{(x+\triangle x)x}$$

$$=\frac{1}{x+\triangle x}-\frac{1}{x} \qquad \text{Goal: Equation of the tangent line to}$$

$$=\frac{x-(x+\triangle x)}{(x+\triangle x)x} \qquad y=1/x \text{ at } (2,1/2).$$

$$Slope=[dy/dx]_{x:\to 2}$$

$$=\frac{-\triangle x}{(x+\triangle x)x} \qquad \text{SKILL}$$

$$=\frac{-\triangle x}{(x+\triangle x)x} \qquad \text{Equation:}$$

$$y=(1/2)+(-1/4)(x-2)$$
SKILL find slope of tan line find eq'n of tan

Recall:
$$f'(x) := \lim_{h \to 0} \frac{[f(x+h)] - [f(x)]}{h}$$

Alternate notation:
$$f'(x) = \lim_{u \to x} \frac{[f(u)] - [f(x)]}{u - x}$$

Let
$$y := f(x)$$

$$f'(x) = \frac{dy}{dx} = \frac{dy}{dx} = \frac{d}{dx}[f(x)]$$
exception for "implicit differentiation"

For *these* slides, remember:

in §4.9

$$f'(x) = \frac{dy}{dx} = \frac{d}{dx}[f(x)]$$

Recall:
$$f'(x) \stackrel{\text{def'n}}{:=} \lim_{h \to 0} \frac{[f(x+h)] - [f(x)]}{h}$$

A function f is differentiable at a if f'(a) exists.

It is differentiable on an open interval

$$(p,q)$$
 or (p,∞) or $(-\infty,q)$ or $(-\infty,\infty)$

if it is differentiable at every number in the interval.

EXAMPLE: Where is the function f(x) = |x| differentiable?

Understood: f is the function, NOT f(x) $f: \mathbb{R} \to \mathbb{R}$

Recall:
$$f'(x) := \lim_{h \to 0} \frac{[f(x+h)] - [f(x)]}{h}$$

It is differentiable on an open interval

$$(p,q)$$
 or (p,∞) or $(-\infty,q)$ or $(-\infty,\infty)$

if it is differentiable at every number in the interval.

EXAMPLE: Where is the function f(x) = |x| differentiable? equal

$$f'(3) = \lim_{h \to 0} \frac{[f(3+h)] - [f(3)]}{h} \stackrel{??}{=} \lim_{h \to 0} \frac{[3+h] - [3]}{h}$$
equal for h sufficiently close to 0
NOT equal

$$f(x) = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x \le 0 \end{cases}$$

Recall:
$$f'(x) := \lim_{h \to 0} \frac{[f(x+h)] - [f(x)]}{h}$$

A function f is differentiable at a if f'(a) exists.

It is differentiable on an open interval

$$(p,q)$$
 or (p,∞) or $(-\infty,q)$ or $(-\infty,\infty)$

if it is differentiable at every number in the interval.

EXAMPLE: Where is the function f(x) = |x| differentiable?

$$f'(3) = \lim_{h \to 0} \frac{[f(3+h)] - [f(3)]}{h} \stackrel{??}{=} \lim_{h \to 0} \frac{[3+h] - [3]}{h} = 1$$

 $3:\to x$, for x>0 equal for h sufficiently close to 0

 $f(x) = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x \le 0 \end{cases}$

Recall:
$$f'(x) := \lim_{h \to 0} \frac{[f(x+h)] - [f(x)]}{h}$$

It is differentiable on an open interval (p,q) or (p,∞) or $(-\infty,q)$ or $(-\infty,\infty)$

The is differentiable at every fluitiber in the interval.

EXAMPLE: Where is the function f(x) = |x| differentiable?

$$\forall x > 0,$$
 $f'(x) = \lim_{h \to 0} \frac{[f(x+h)] - [f(x)]}{h} = \lim_{h \to 0} \frac{[x+h] - [x]}{h} = 1$

f is differentiable on $(0,\infty)$.

$$f(x) = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x \le 0 \end{cases}$$

Recall:
$$f'(x) := \lim_{h \to 0} \frac{[f(x+h)] - [f(x)]}{h}$$

It is differentiable on an open interval

$$(p,q)$$
 or (p,∞) or $(-\infty,q)$ or $(-\infty,\infty)$

if it is differentiable at every number in the interval.

EXAMPLE: Where is the function f(x) = |x| differentiable?

$$\forall x < 0, \\ f'(x) = \lim \frac{[f(x+h)] - [f(x)]}{1 - [f(x)]} = \lim \frac{[-(x+h)] - [-x]}{1 - [-x]} = -$$

 $f'(x) = \lim_{h \to 0} \frac{[f(x+h)] - [f(x)]}{h} = \lim_{h \to 0} \frac{[-(\cancel{k} + h)] - [-\cancel{k}]}{h} = -1$ at x = 0?

tan. lines have

slope =-1

f is differentiable on $(-\infty,0)$. f is differentiable on $(0, \infty)$.

 $f(x) = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x \le 0 \end{cases}$

24 tan. lines have

slope = 1

Recall:
$$f'(x) := \lim_{h \to 0} \frac{[f(x+h)] - [f(x)]}{h}$$

A function f is differentiable at a if f'(a) exists.

It is differentiable on an open interval

$$(p,q)$$
 or (p,∞) or $(-\infty,q)$ or $(-\infty,\infty)$

if it is differentiable at every number in the interval.

EXAMPLE: Where is the function f(x) = |x| differentiable?

$$\lim_{h \to 0} \frac{[f(0+h)] - [f(0)]}{h} = \lim_{h \to 0^+} \frac{h}{h} = 1$$

at x = 0?

f is differentiable on $(-\infty,0)$. f is differentiable on $(0,\infty)$.

$$f(x) = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x \le 0 \end{cases}$$

right tan. line

Recall:
$$f'(x) := \lim_{h \to 0} \frac{[f(x+h)] - [f(x)]}{h}$$

It is differentiable on an open interval

$$(p,q)$$
 or (p,∞) or $(-\infty,q)$ or $(-\infty,\infty)$

if it is differentiable at every number in the interval.

EXAMPLE: Where is the function f(x) = |x| differentiable?

$$\lim_{h \to 0^{-}} \frac{[f(0+h)] - [f(0)]}{h} = \lim_{h \to 0^{-}} \frac{-h}{h} = -1$$

at x = 0?

f is differentiable on $(-\infty,0)$. f is differentiable on $(0,\infty)$.

$$f(x) = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x \le 0 \end{cases}$$

left tan. line right tan. line has slope = -1 has slope = 1

Recall:
$$f'(x) := \lim_{h \to 0} \frac{[f(x+h)] - [f(x)]}{h}$$

It is differentiable on an open interval

$$(p,q)$$
 or (p,∞) or $(-\infty,q)$ or $(-\infty,\infty)$

if it is differentiable at every number in the interval.

EXAMPLE: Where is the function f(x) = |x| differentiable?

$$\lim_{h\to 0} \frac{[f(0+h)]-[f(0)]}{h} \, \mathrm{DNE}$$

$$h \rightarrow 0$$
 h

at
$$x = 0$$
?

f is differentiable on $(-\infty,0)$. f is differentiable on $(0, \infty)$.

$$f(x) = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x \le 0 \end{cases}$$

Recall:
$$f'(x) := \lim_{h \to 0} \frac{[f(x+h)] - [f(x)]}{h}$$

It is differentiable on an open interval

$$(p,q)$$
 or (p,∞) or $(-\infty,q)$ or $(-\infty,\infty)$

if it is differentiable at every number in the interval.

EXAMPLE: Where is the function f(x) = |x| differentiable?

$$\lim_{h \to 0} \frac{[f(0+h)] - [f(0)]}{h} \, \mathsf{DNE}$$

at x = 0?

So: contin. at $a \Rightarrow$ diff. at a, but...

f is not differentiable at 0.

f is differentiable on $(-\infty, 0)$. f is differentiable on $(0, \infty)$.

$$f(x) = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x \le 0 \end{cases}$$

Recall:
$$f'(x) := \lim_{h \to 0} \frac{[f(x+h)] - [f(x)]}{h}$$

A function f is differentiable at a if f'(a) exists.

It is differentiable on an open interval

$$(p,q)$$
 or (p,∞) or $(-\infty,q)$ or $(-\infty,\infty)$

if it is differentiable at every number in the interval.

TH'M: If f is differentiable at a, then f is continuous at a.

Pf:
$$\frac{(f(\overline{u})) - (f(a))}{\overline{u} - a} \to f'(a), \quad \stackrel{u}{\longrightarrow} \frac{x}{a} = a$$

So: contin. at $a \Rightarrow$ diff. at a, but...

f is not differentiable at 0. "two-sided" tan. line DNE

f is differentiable on $(-\infty, 0)$. f is differentiable on $(0, \infty)$.

$$f(x) = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x \le 0 \end{cases}$$

Recall:
$$f'(x) := \lim_{h \to 0} \frac{[f(x+h)] - [f(x)]}{h}$$

A function f is differentiable at a if f'(a) exists.

It is differentiable on an open interval

$$(p,q)$$
 or (p,∞) or $(-\infty,q)$ or $(-\infty,\infty)$ if it is differentiable at every number in the interval.

TH'M: If f is differentiable at a, then f is continuous at a.

Pf:
$$\frac{(f(x))-(f(a))}{x-a} o f'(a)$$
, as $x o a$

x-a So: contin. at $a \Rightarrow$ diff. at a, but...

f is not differentiable at 0. "two-sided" tan. line DNE

f is differentiable on $(-\infty, 0)$. f is differentiable on $(0, \infty)$.

$$f(x) = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x \le 0 \end{cases}$$

Recall:
$$f'(x) \stackrel{\text{def'n}}{:==} \lim_{h \to 0} \frac{[f(x+h)] - [f(x)]}{h}$$

It is differentiable on an open interval

$$(p,q)$$
 or (p,∞) or $(-\infty,q)$ or $(-\infty,\infty)$

if it is differentiable at every number in the interval.

TH'M: If f is differentiable at a, then f is continuous at a.

Pf:
$$\frac{(f(x)) - (f(a))}{x} \to f'(a)$$
, as $x \to a$

Pf:
$$\frac{(f(x)) - (f(a))}{x - a} \to f'(a)$$
, as $x \to a$ MULTIPLY TOGETHER $x - a \to 0$, as $x \to a$

$$x-a o 0,$$
 as $x o a$ $\left[\frac{(f(x))-(f(a))}{x-a}\right][x-a] o [f'(a)][0],$ as $x o a$ $\|x
eq a$ 0

(f(x)) - (f(a))

Recall:
$$f'(x) := \lim_{h \to 0} \frac{[f(x+h)] - [f(x)]}{h}$$

A function f is differentiable at a if f'(a) exists.

It is differentiable on an open interval

$$(p,q)$$
 or (p,∞) or $(-\infty,q)$ or $(-\infty,\infty)$

if it is differentiable at every number in the interval.

TH'M: If f is differentiable at a, then f is continuous at a.

Pf:
$$(f(x))-(f(a)) o 0$$
, as $x o a$ $f(a) o f(a)$, as $x o a$

$$ightarrow$$
 , as $x
ightarrow a$

)

Recall:
$$f'(x) := \lim_{h \to 0} \frac{[f(x+h)] - [f(x)]}{h}$$

A function f is differentiable at a if f'(a) exists.

It is differentiable on an open interval

$$(p,q)$$
 or (p,∞) or $(-\infty,q)$ or $(-\infty,\infty)$

if it is differentiable at every number in the interval.

TH'M: If f is differentiable at a, then f is continuous at a.

Pf:
$$(f(x)) - (f(a)) \to 0$$
, as $x \to a$

$$f(a) \to f(a)$$
, as $x \to a$

$$f(x) o f(a)$$
, as $x \to a$

$$\lim_{x \to a} (f(x)) = f(a) \text{ QED}$$

f not def'd at s, so not contin. at s, so not diff. at s f not contin. at t, so not diff. at t f not diff. at u

TH'M: If f is differentiable at a, then f is continuous at a.

Pf:
$$(f(x))-(f(a)) o 0$$
, as $x o a$ $f(a) o f(a)$, as $x o a$ TOGETHER $f(x) o f(a)$, as $x o a$ $\lim_{x o a} (f(x)) = f(a)$ QED

f not def'd at s, so not contin. at s, so not diff. at s f not contin. at t, so not diff. at t f not diff. at u

"defined": There's a dot there.

"continuous": There's no break there.

"differentiable": There's neither a break nor a sudden change of direction there.

