CALCULUS
Antidifferentiation




Key point: Differentiation is about splitting things apart
into small pieces.
“Integration” is about putting the pieces

back together to form the whole.

( [(f(0.01)) — (f(O)]
--[(f(O 02)) — (f(0.01))]
(f(1)) = (f(0)) = | -
--[(f(O 99)) — (f(0.98))]
| +[(f(1.00)) — (£(0.99))]

We can reassemble (f(1)) — (f(0)) Terms all small.

from the pieces, Renormalize,
via addition. by dividing by 0.01.




Key point: Differentiation is about splitting things apart

(f(1)) = (f(0)) =

We can reassemble (f(1)) — (f(0))

from the pieces,
via addition.

into small pieces.
“Integration” is about putting the pieces

back together to form the whole.

[ [(f(0.01)) — (f(0))]/[0.01] )
+[(f(0.02)) — (s(0.01))]/[0.01]
+[(/(0.99)) — (/(0.98))]/[0.01]

+[(f(1.00)) — (f(0.99))]/[0.01],

[0.01]

Terms all small.
Renormalize,
by dividing by 0.01.
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Key point: Differentiation is about splitting things apart
into small pieces.
“Integration’ is about putting the pieces

back together to form the whole.

[ [(f(0.01)) — (f(O))]/[0.01] )
+[(f(0.02)) — (s(0.01))]/[0.01]

(FA) = (O =14+ [0.01]
7/((f(0-99)) — (f(0.98))]/[0.01]
+[(f(1.00)) — (f(0.99))]/[0.01],

We can reassemble (f(1)) — (f(0))

from /the “renormalized” pieces,
via ‘“renormalized” addition.

(f(0.76)) — (f(0.75)) _ [(f(0-75 + h)) — (f(0.75))

0.01 h h:—0.01
o (F(0.75+ ) — (F(0.75))
- h—0 h

487.1

571 = f/(0.75)




Key point: Differentiation is about splitting things apart
into small pieces.
“Integration’ is about putting the pieces

back together to form the whole.

Going from f’ to f is called ‘“antidifferentiation” ...
Integration tells us how to

reassemble (f(1)) — (f(0))
from all the f/(z), with = € [0, 1].

We can reassemble (f(1)) — (f(0))

from the “renormalized” pieces,
via ‘“renormalized” addition.

(f(0.76)) — (f(0.75)) _ |(f(0.75+ h)) — (f(0.75))

0.01 h h:—0.01
< (im SO75+ 1)) — (£(0.75))
h—0 h 5071

571 = f/(0.75)




Let D CR. Let f: D — R be a function.
cf. §7.2, p. 145 DEFINITION
A function F : D — R is called an antiderivative of f
if, Vo € D, we have: F/(z) = f(z).

Going from f’ to f is called ‘“antidifferentiation” ...
Integration tells us how to

reassemble (f(1)) — (f(0))
from all the f/(z), with = € [0, 1].

We can reassemble (f(1)) — (f(0))

from the “renormalized” pieces,
via ‘“renormalized” addition.

(f(0.76)) — (f(0.75)) _ |(f(0.75+ h)) — (f(0.75))

0.01 h h:—0.01
< (im SO75+ 1)) — (£(0.75))
h—0 h T

571 = f/(0.75)




Let DCR. Let f: D — R be a function.
cf. 7.2, p. 145 DEFINITION
A function F: D — R is called an antiderivative of f
if, Vo € D, we have: F/(z) = f(z).

e.g.. f(z) =a?
Guess: F(z) = $z° Guess—E(z) = 23
Fl(z) =22 = f(2) (r) = 3 T

§7.2




Let DCR. Let f: D — R be a function.
cf. 7.2, p. 145 DEFINITION
A function F: D — R is called an antiderivative of f
if, Vo € D, we have: F/(z) = f(z).

e.g.. f(z) =a?

Guess: F(x) = %m?’ Guess: F(x) = %x?’ + 6

F'(z) = z* = f(x) F'(z) = z° = f(x)

Other antiderivfatines:
xT .t x

%563 48 (o W.r )

%zc?’ + 3

867.2
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Let DCR. Let f: D — R be a function.

cf. §7.2, p. 145 DEFINITION

A function F: D — R is called an antiderivative of f
if, Vo € D, we have: F/(z) = f(z).

e.g.. f(z) =a?

Guess: F(z) = :_1356
Fl(z) =22 = f(x

Guess: F(z) = 223+ 6

Other antiderivatives:
1 3 3 (of z2 w.r.t. z)

)

§ZC

F'(z) = 22 ;é f(x

1.3 33—

gm

§7.2

d/dx is not “1-1"
and so is not invertible.

967.2




Let DCR. Let f: D — R be a function.
cf. 7.2, p. 145 DEFINITION
A function F: D — R is called an antiderivative of f
if, Vo € D, we have: F/(z) = f(z).

cf. §6.5, p. 136 (TH'M 6.28): works for any \
_ _ kind of interval
If ¢'(x) = h/(x), for all z in an jnterval I, (open, closed,
then g — h is constant on I; (bdg unoRe)

that is, dce R s.t. Vx € I,
g(z) = (h(z)) + c.

e.g.. f(z) =a? dom[f] =R is an interval.

Guess: F(z) = :1,,39 Guess: F(z) = 223+ 6
= f(z

Fl(z) = z2 ~ Fl(z) = z2 ;é f(x)
Other antiderivatives:
1 3 (of z2 w.r.t. z) m /
3 8 = 2

377 + 37 d/dx is not “1-1"

1.3 . and so is not invertible.
{gﬂ? ——C|C€R} IS

1067 .2
7.0 the set of all antiderivatives of z2 w.r.t. .




Let DCR. Let f: D — R be a function.
cf. 7.2, p. 145 DEFINITION
A function F: D — R is called an antiderivative of f
if, Vo € D, we have: F/(z) = f(z).

cf. §6.5, p. 136 (TH'M 6.28): works for any \
_ _ kind of interval
If ¢'(x) = h'(x), for all = in an interval I, (open, closed,
then g — h is constant on I; (bdg unoRe)

that is, dce R s.t. Vx € I,
g(z) = (h(z)) + c.

cf. 7.2, p. 149 The set of all antiderivatives of f(z) w.r.t. x \
is denoted ] f(x) daf.

Traditional to

: 2 — 1.3 drop the set braces
e.g..f z=dx _{333 +CC eR} and everything after

the vertical line (|)

More on this later ...

{323+ C[CeR}is

11672

7.0 the set of all antiderivatives of z2 w.r.t. .




Let DCR. Let f: D — R be a function.
cf. 7.2, p. 145 DEFINITION
A function F: D — R is called an antiderivative of f
if, Vo € D, we have: F/(z) = f(z).

d _ 1
— (arcsinz) =
dx 1 — 562

cf. 7.2, p. 149 The set of all antiderivatives of f(z) w.r.t. x \
is denoted ] f(x) daf.

Traditional to

: 2 — 1.3 drop the set braces
e.g..faf; dr = 3L +C and everything after

the vertical line (|)

More on this later ...

{323+ C|CeR}is

12672

7.0 the set of all antiderivatives of z2 w.r.t. .




Let DCR. Let f: D — R be a function.
cf. 7.2, p. 145 DEFINITION
A function F: D — R is called an antiderivative of f
if, Vo € D, we have: F/(z) = f(z).

domain: ‘d - 1 domain:
— (larCSIin )
1<:19<1d$/(|7— \/1—5172 —1<xz<1

1
An antiderivative of w.r.t. = is

V1 — 22

arcsinx, —-1<x<1. sloppy. . .
RESTRICTION RESTRICTIONS
OF FUNCTIONS OF EXPRESSIONS
arcsin arcsinx
arcsin| (—1,1) arcsinz, —-1l<z<1
1367.2

§7.2




Let DCR. Let f: D — R be a function.
cf. 7.2, p. 145 DEFINITION
A function F: D — R is called an antiderivative of f
if, Vo € D, we have: F/(z) = f(z).

domain: ‘d - 1 domain:
— (larcsin ol) =
1<ac<1d$/(|7— \/1—5172 —1<xz<l1

An antiderivative of w.r.t. = Is
V1 — 2
arcsinxe, —-1<zxz<1

cf. §7.2, p. 145 DEFINITION
Let a,b € R satisfy a < b. Assume that (a,b) C D.
A function F' is called an antiderivative of f on (a,b)
if, Vx € (a,b), we have: F'(z) = f(z).

of on -1 <x<1.
§7.2 1 — 2




Let DCR. Let f: D — R be a function.
cf. 7.2, p. 145 DEFINITION
A function F: D — R is called an antiderivative of f
if, Vo € D, we have: F/(z) = f(z).

domain: ‘d - 1 domain:
— (larcsin ol) =
1<ac<1d$/(|7— \/1—5172 —1<xz<l1

cf. §7.2, p. 145 DEFINITION
Let a,b € R satisfy a < b. Assume that [a,b] C D.

A function F' is called an antiderivative of f on [a,b]
if both F is continuous on [a, b]
and F'is an antiderivative of f on (a,b).

arcsin x| is an antiderivative w.r.t. «

contin. on -1 <z <1 of 5 on —1 Dz 1. 1567 .2
§7.2 1 —




Let DCR. Let f: D — R be a function.
cf. 7.2, p. 145 DEFINITION
A function F: D — R is called an antiderivative of f
if, Vo € D, we have: F/(z) = f(z).

domain: ‘d - 1 domain:
— (larcsin ol) =
1<ac<1d$/(|7— \/1—5172 —1<xz<l1

cf. §7.2, p. 145 DEFINITION
Let a,b € R satisfy a < b. Assume that [a,b] C D.

A function F' is called an antiderivative of f on [a,b]
if both F is continuous on [a, b]
and F'is an antiderivative of f on (a,b).

of on -1 <zx<1.
§7.2 1 — 22




cf. 7.2, p. 149 The set of all antiderivatives of f(x) w.r.t. x

e,g,:/;UQd;U _ * L C I|s denoted ff(a:)dm.
3

domain: ‘d - 1 domain:
— (larCSIin )
1<ac<1d$/(|7— \/1—5172 —1<xz<l1

cf. §7.2, p. 145 DEFINITION
Let a,b € R satisfy a < b. Assume that [a,b] C D.

A function F' is called an antiderivative of f on [a,b]
if both F is continuous on [a, b]
and F'is an antiderivative of f on (a,b).

of on -1 <zx<1.
§7.2 1 — 22




cf. 7.2, p. 149 The set of all antiderivatives of f(x) w.r.t. x

23
e.g.:/;ch:r; — L C I|s denoted /f(a:') d.

3 Lo e ——— .
e.g.:/ "t dr = . FC, if nis positive

nt n=—1/277

1/2
: —1/2 _ 7 |

e.g../ x da:slo—ppy 172 FC, x#0

18

Ch. 7




cf. 7.2, p. 149 The set of all antiderivatives of f(a:) w.r.t. o

2 x> denoted d ] 1
e.g.:/:c dr = - C |'5 chote f(z) dxj, e
3 L e I T
ont1 n=-—177
e.g /:cnda: — - C, If nis positive
n-+1
1/2
e.g /x_l/zda: — 2 - C
sloppy 1 /2

19

Ch. 7




cf. 7.2, p. 149 The set of all antiderivatives of f(a:) w.r.t. o

.’15'3 I
e.g.:/;ch:r; — L C I|s denoted /f(a:) dj., 11
3 I 7 S— =
e.g /:cn dr = - C, if nis positive
n-+1
1
eg.:/ —dx = 7?77
£L
y = In(—2) y = In(z)

20

Spp




cf. 7.2, p. 149 The set of all antiderivatives of f(a:) w.r.t. o

.’15‘3 I
e.g.:/ 22 dr — L C I|s denoted /f(a:) dj., 11
3 LM =
e.g.:/ zdr = L C, if nis positive
n-+1
e.g.:/ 1al:z: = 77 [nz])] + €77 1
x In(|z|) is an antiderivative of — w.r.t. .

I
y = In(|z|)

™

21

Spp




cf. §6.5, p. 136 (TH'M 6.28): works for any

kind of interval

If ¢’(z) = K (x), for all  in an interval I, (open, closed,
then g — h is constant on I; (bddh,aLfB%%%r)])

that is, dJce R s.t. Vo € I,
g(z) = (h(z)) + c.

domain: E o2 NOT an interval
e.g.:/ 1d33 — 2?7 EIM

£ 1
x In(|xz|) is an antiderivative of — w.r.t. z.
xZ

y=In(jz) |

™

graph has TWO “branches”

22

Spp




cf. §6.5, p. 136 (TH'M 6.28): works for any

kind of interval

If ¢'(x) = h/(z), for all z in an interval I, (open, closed,
then g — h is constant on I; (bddh,abf;]%%%r)l)

that is, dJce R s.t. Vo € I,
g(z) = (h(z)) + c.

y = In(—2) y = In(z)

23

Spp




cf. §6.5, p. 136 (TH'M 6.28): works for any

kind of interval

If ¢'(x) = h/(z), for all z in an interval I, (open, closed,
then g — h is constant on I; (bddh,abf;]%%%r)l)

that is, dJce R s.t. Vo € I,
g(z) = (h(z)) + c.

1 R L (In(x)) + A, if x >0
e.g../ dr = 77 Inap(z) = {(m(_m)) T

y = (In(z)) + A

y = In(z)

y = (In(=z)) + B

y = In(—x)

24

Spp




cf. §6.5, p. 136 (TH'M 6.28): works for any

kind of interval

If ¢'(x) = h/(z), for all z in an interval I, (open, closed,
then g — h is constant on I; (bddh,abf;]%%%r)l)

that is, dJce R s.t. Vo € I,
g(z) = (h(z)) + c.

1 R L (In(x)) + A, if x >0
e.g../ dr = 77 Inap(z) = {(m(_m)) T

y = Inap(x)

Tangent line slopes
stay the same.

Derivative still 1/x. 25
Spp




VA, B € R,

1
In 4g(x) is an antiderivative of — w.r.t. x.

X

1
/ —dx ={lnyp(x)| A, B €R} too complicated...
xZ

1
e.g.:/ ;da: = 77 Insp(x) (= {(In(—ac))—

y = Inap(x)

(In(z)) + A, if &> 0

- B, ifx <0

Tangent line slopes
stay the same.

Derivative still 1/x.

Spp

26




VA, B € R,

1
In 4g(x) is an antiderivative of — w.r.t. x.
X

1
/ —dx ={lnyp(x)| A, B €R} too complicated...
xZ

1 R L (In(x)) + A, if x >0
e'g”/ :cd o nap(z) = {(In(—x)) + B, ifx <0

1  sloppy It's quite common to list

_r one antiderivative “plus C",
;da: = [In(jzD] +C even in cases where it's

technically wrong!

mn—l—l
f:c”da:— LC, ifn# -1

n—+1 27

Ch. 7 sometimes sloppy




2/3

/a':_l/?’da: — 2 - C
sloppy2/3 '
X 2 .CC#O
—1
T
/m_zda: = - C
sloppy —1
1/2
/:13_1/20!3: — v - C
sloppy 1 /2
1  sloppy

;diﬁ‘ = [In(jz] +C

n—+1
/mnda:' = 2 - C,

n-+1

Ch.

7 sometimes sloppy

Tn#*-1

differing domains and . ..
domain not an interval

domain not an interval

differing domains

domain not an interval

28




2/3

~1/3 oz differing domains and . ..
/x / dmslo_pzpy2/3 -C domain not an interval
X
x—l
/a:_2 dr = - C domain not an interval
sloppy —1

Don't worry about
all this sloppiness, . ..

L1/2
/:13_1/2 dr = L C differing domains
sloppy 1/2
1  sloppy | |
“dr = [In(JzD]+ C  domain not an interval
T

mn—l—l
/:c”da:— LC, ifn# -1

n-+1 29

Ch.

7 sometimes sloppy




Ch.

2/3
2/3@

Don't worry about
all this sloppiness, . ..

but the

1/2 following
1/2 considered
important. . .

Next: table of

[In((Dm(D)]@ antiderivatives

n -+ 1@ 30




TABLE OF ANTIDIFFERENTIATION FORMULAS

Particular Particular
Function antiderivative Function antiderivative
c(f(x)) c(F(x)) COSQ.CE ST Assume
sec“x tanx /I __
(f(z)) + (g(z)| (F(z)) + (G(x)) =7
(secz)(tanx) secx G'=g.
noopE 1 2 sometimes | S e A Ry FORMULAS
Lo, n n+ 1 sloppy .
Tz RED sinx =COSz
o o csc?x =cotz
(cscx)(cotx) ©=CSCx 31

Ch. 7




TABLE OF ANTIDIFFERENTIATION FORMULAS

Particular Particular
Function antiderivative Function antiderivative
c(f(x)) c(F(x)) oSz Sin
2
Sec< x tanzx
(f(z)) + (g(x))| (F(=z)) + (G(=x))
(secz)(tanx) secx
n "1 sometimes 1
", n#F -1 ———  sloppy
n-+1 . >
1/z in(lz) — — COS«x
et et
sinax — COS«x

Ch. 7

Assume
F =

G'=g
32




TABLE OF ANTIDIFFERENTIATION FORMULAS
Particular Particular
Function antiderivative Function antiderivative
c(f(x)) c(F(x)) oS Sin
2
(f(@)) + (gD (F(2)) + (G(a)) —22 fanz
(secz)(tanx) secx
n z" 1 sometimes 1 .
", nF -1 n+ 1 sloppy arcsin x,
2 —1 1
1/ n(2D 1@ R
= o 1
sinx — COS«x 1—|—x2 arctanz

Ch. 7

Assume
F =

G'=g
33




EXAMPLE: Find all functions g such that

9, 4 3
g (x) = 3coszx - ‘ - \/E
T
g'(z) = 3[cosa+ —[z=20/3
ANTIDIFF 2 :c_17/3
= 3 sin 2 — @)
g(x) =3sine [—2] ~17/3
-
‘ +3K = M)
TABLE OF ANTIDIFFERENTIATION FORMULAS
Particular Particular
Function antiderivative Function antiderivative
c(f()) c(F()) cos s Sinz Assume
(f(2) + (g@) | (F(2)) + (G(a)) f—2 fans F'=f
(secx)(tanxz) secx G'=g.
n z" 1 sometimes 1 .
", nF -1 n+ 1 sloppy arcsin z,
2 —1 1
I in(zD 1@ B
T 7 1
sinax — COS«x 14+ 22 arctanz 24

Ch. 7




EXAMPLE: Find all functions g such that

g (z) = 3cosx -

Dt —

%.

+17 3
sloppy
3x—17/3/17 +C M

¢ (x) = 3cosx 4+ 2273

g(x) =3 sinx

— 3Sinx %—I—

TABLE OF ANTIDIFFERENTIATION FORMULAS

Particular Particular
Function antiderivative Function antiderivative
c(f(x)) c(F(x)) oSz Sin
2
Sec< x tanzx
(f(z)) + (g(x))| (F(=z)) + (G(=x))
(secz)(tanx) secx
n "1 sometimes 1 .
", nF -1 n+ 1 sloppy arcsin x,
1 — 22 —-1<zxz<l1
1/x In(|x|)
oL oL 1
arctan
sinx — COSx 14+ 22 .

Assume
Fl'=f
G' =g.

Ch. 7

35




EXAMPLE:

Find f if both f/(z) =e2*

ANTIDIFF

TABLE OF ANTIDIFFERENTIATION FORMULAS

Particular Particular
Function antiderivative Function antiderivative
c(f(x)) c(F(x)) oSz Sin
2
Sec< x tanzx
(f(z)) + (g(x))| (F(=z)) + (G(=x))
(secz)(tanx) secx
n "1 sometimes 1 .
", nF -1 n+ 1 sloppy arcsin z,
1 — 22 —-1<zxz<l1
1/x In(|x|)
oL oL 1
arctan
sinx — COSx 14+ 22 .

Assume
F' =
G' =g.

Ch. 7

36




EXAMPLE: 5 15

Find f if both f'(z) =% / and f(0) = —2.
ANTIDIFF VT - 22

_____________________ 7 o el___

2x )
e Next:
v € (—1,1), T+ antidifferentiate
- f(g())
15arcsinx — 5 [ ]
4 =71\ 1 5
L T = L@+ =4 - 2 =C
TABLE OF ANTIDIFFERENTIATION FORMULAS ‘
Particular Particular
Function antiderivative Function \ntiderivative
c(f(x)) o(F(z)) cos \\ sina Assume
(f(@)) + (g@) | (F(2)) + (G(a)) —22 fane F =
(secx)(tanxz) \%eC:L' G'=g.
n "1 sometimes 1 \ .
", nF -1 n+ 1 sloppy arcsin z,
2 1 1
1/ n(zD L@ ST
" o 1
sinx — COSx 1—|—x2 arctanz 37 7

Ch. 7




EXAMPLE: Find the set of all antiderivatives of

_________________ sin(4e +7). .
— cos(j.cc + 7) O m
R R
Coody e _sntas+n)
= f d‘i [F(G’Z+ b | _ f(az + b)
Ty D A S

WARNING: No similar formula for f(axz? + bx + ¢).
EXAMPLE: Find the set of all antiderivatives of

___________________ (et 7) .
(n(le D)= (711 In(4z +7) oo -
§8.1 | 4




EXAMPLE: Find the set of all antiderivatives of

sin(4x 4+ 7).
—cos(d4x + 7
GetD) o m
Next: D osar 4 7)) = (sin(4z +7))(@)
Motion dx
along - _ L
a line :_(_cos)’zsin: sin(4z +7)
d | F b
dx a
0U: Fund. d > Thereis NO
Th'm of Calc — [ 77 ] —e “elementary”
gives an answer. dx antiderivative.

WARNING: No similar formula for f(az? + bx + c¢).
EXAMPLE: Find the set of all antiderivatives of

___________________ L B
(in(le )" = ()71 In(j4z 4 7)) iy 39
58.1 | 4




Overdot denotes d/dt.

MOTION ALONG A LINE

velocity
acceleration
jerk :
= (Jerk)®
.= (snap)*
.= (crackle)®

snap
crackle
POP

etc.,

(position)®
(velocity)®
(acceleration)®

etc., etc.

Integration carries

etc., etc., etc.,
pop to crackle,

crackle to snap,
snap to jerk,
jerk to acceleration,

acceleration to velocity,

velocity to position.

40




Integration carries
etc., etc., etc.,
pop to crackle,

crackle to snap,
snap to jerk,
jerk to acceleration,
acceleration to velocity,
velocity to position.

Integration carrigs
etc., etc., ptc.,
pop to crafkle,

crackle to sn3gp, cf. EXAMPLE 3
snap to Jerk, . §2.1, pp. 85-86
jerk to acgeleratien,

acceleration to velpcity, |building

velocity to pogition. 41




Integration carries
etc., etc., etc.,
pop to crackle,

crackle to snap,
snap to jerk,
jerk to acceleration,
acceleration to velocity,
velocity to position.

O rods: e ,i
4 rods .................................................. > g).

acceleration: 4 rods/sec

2 rods/sec/sec

velocity at time O:
O rods/sec

velocity/at time t:

2t[3><C] rods/sec

position at time O:
0 rods

position at tiqﬁe t:

§7.1 t°> rods i

A

<

0 sec
1 sec

2 secs

cf. EXAMPLE 3
§2.1, pp. 85-86

tall
building

42
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Integration carries
etc., etc., etc.,
pop to crackle,

crackle to snap,
snap to jerk,
jerk to acceleration,
acceleration to velocity,
velocity to position.

EXAMPLE: A particle moving along a line has acceleration
a(t) =5t — 4 cm/s2. Its initial velocity is v(0) = —7 cm/s
and its\initial position is s(0) = 3 cm.

Firﬁd Its pos!

on function s(t).

a(t)’ =5t —4

ANTIDIFF /

v(t) = 32 — 4t -7
AN TIDIFF

43

!
=1 s =32 -22-7t+3 M




Integration carries
etc., etc., etc.,
pop to crackle,

crackle to snap,
snap to jerk,
jerk to acceleration,
acceleration to velocity,

velocity to position. .

EXAMPLE: A ball is thrown upward with a
speed of 128 ft/s from the edge of a roof 320 ft above the

ground. FIi its height above the ground’t seconds Iater.
When does it hit the ground? 10 seconds after being thrown

s(t) = height
s"(t) = —-32
s'(t) = —32t + 128

s(t) = —16t2 4+ 128t + 320

in ft) above groun&  at ¢ secs

to :=\time when hits ground

0 = —16t3 + 128tg + 320 = —16(t3 —'8ty — 20) p”

571

—16(tg — 10)(to + 2)




