Math 4603 Midterm 3

Name: _____

Instructions:

This exam contains 6 questions. Each question is worth 20 points. The exam is worth 120 points in total.

1. Define $f: (0, \infty) \to \mathbb{R}$ by f(x) = 1/x. Use the definition of derivative to show that f is differentiable and $f'(x) = -1/x^2$.

Solution. Let $x \in (0, \infty)$ and compute:

$$f'(x) = \lim_{y \to x} \frac{1/y - 1/x}{y - x} = \lim_{y \to x} \frac{x - y}{xy(y - x)} = \lim_{y \to x} -\frac{1}{xy} = -\frac{1}{x^2},$$

where the last equality comes from continuity of the function $g(y) \equiv -1/(xy)$ on $(0, \infty)$.

2. Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable and suppose that f'(x) > 0 for all x. Show that f is strictly increasing, that is, f(x) < f(y) whenever x < y.

Solution. Let x < y. By MVT, there is $c \in (x, y)$ such that

$$\frac{f(y) - f(x)}{y - x} = f'(c) > 0.$$

Thus f(y) - f(x) = f'(c)(y - x) > 0; that is, f(x) < f(y).

3. Define $f: [-1,1] \to \mathbb{R}$ by $f(x) = \sqrt{1-x^2}$. Show that f is uniformly continuous¹ but not Lipschitz continuous.

Solution. We have seen that $g(x) = \sqrt{x}$ is continuous on $[0, \infty)$, and $h(x) = 1 - x^2$ is everywhere continuous since it is a polynomial. Since $h([-1, 1]) = [0, 1] \subset [0, \infty)$, it follows that $f = g \circ h$ is continuous. As [-1, 1] is compact, f is uniformly continuous.

Let M > 0 and pick $0 < x < 1 - 1/M^2$. Then

$$\left|\frac{f(x) - f(1)}{x - 1}\right| = \frac{\sqrt{1 - x^2}}{1 - x} = \sqrt{\frac{1 + x}{1 - x}} > \sqrt{\frac{1}{1 - x}} > \sqrt{M^2} = M,$$

so |f(x) - f(1)| > M|x - 1|. Since M was arbitrary, f is not Lipschitz continuous.

¹Do not use the definition to show this. What do we know about compositions of continuous functions?

4. Let $\phi(x) = 2x - x \ln x$. Prove² that ϕ is a contraction mapping on [2, e]. If $x_0 = 2$ and $x_{n+1} = \phi(x_n)$ for $n \ge 0$, to what real number does $\{x_n\}_{n=0}^{\infty}$ converge?

Solution. Note that $\phi'(x) = 1 - \ln x \in [0, 1 - \ln 2]$ for $x \in [2, e]$. In particular, ϕ is Lipschitz continuous with constant $K = 1 - \ln 2 < 1$, and ϕ is increasing so

$$\phi([2,e]) \subset [\phi(2),\phi(e)] = [4-2\ln 2,e] \subset [2,e]$$
(1)

where we have used the fact that $\ln 2 < \ln e = 1$, so that $4 - 2 \ln 2 > 2$. We conclude that ϕ is a contraction mapping on [2, e]. So $\{x_n\}$ converges to x_* , the unique solution of $\phi(x_*) = x_*$ in [2, e]. From the equality in (1) we see that $x_* = e$.

²Use without justification the following facts about $f(x) = \ln x$ for x > 0: f'(x) = 1/x, f is strictly increasing, f(1) = 0, and f(e) = 1. Also you may take for granted that e > 2.

5. Let $f : [a, a + h] \to \mathbb{R}$ be such that f'' exists on [a, a + h], with f'(a) = 0 and f''(a) < 0. Use Taylor's theorem to show that if f'' is continuous at a, then f has a local maximum at a.

Solution. By Taylor's theorem, for each $t \in [0, h]$ there exists $c \in (a, a + t)$ such that

$$f(a+t) = f(a) + \frac{1}{2}f''(c)t^2.$$

Thus,

$$\lim_{t \to 0} \frac{f(a+t) - f(a)}{t^2} = \lim_{t \to 0} \frac{f''(c)}{2} = \frac{f''(a)}{2} < 0.$$
⁽²⁾

The second equality in (2) comes by continuity of f'' at a. Since $t^2 > 0$ for all t, equation (2) implies that f(a+t) - f(a) < 0 for t in a δ -interval around 0, i.e. f has a local maximum at a.

6. Define $f:[0,3] \to \mathbb{R}$ by

$$f(x) = \begin{cases} x, & 0 \le x < 1\\ 1, & 1 \le x < 2\\ 2, & x = 2\\ 1, & 2 < x \le 3 \end{cases}$$

and let $P = \{0, 1, 2, 3\}$. Compute U(P, f) and L(P, f).

Solution. U(P, f) = 5 and L(P, f) = 2.