
4603 HW10

1. Use IVT and MVT to show that x3 + x+ 1 = 0 has exactly one solution.

Solution. Let f(x) = x3 + x+ 1. Note that f(−1) = −1 < 0 and f(1) = 3 > 0 so by IVT there
is a solution to x3 + x+ 1 = 0 between −1 and 1. Suppose there are two such solutions, say u
and v, with u 6= v. Then there is c between u and v such that f ′(c) = [f(v)−f(u)]/(v−u) = 0.
But f ′(c) = 3c2 + 1 > 0, contradiction.

2. Define f : (0,∞) → R by f(x) = logb x. Taking for granted the fact that f ′ exists and is
continuous, prove that f ′(x) = c/x where c is a constant.

Solution. Let x ∈ (0,∞) and observe that

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

f
(
1 + h

x

)
h

= lim
h→0

f ′
(
1 + h

x

)
1
x

1

=
f ′(1)

x

(1)

where the first equality in (1) comes from algebraic properties of logarithms1, the second equality
comes from L’Hospital’s rule and the chain rule, and the last equality comes from the assumption
that f ′ is continuous.

L’Hospital’s rule is justified here because: the numerator and denominator of

f
(
1 + h

x

)
h

are both equal to 0 when h = 0, both are differentiable functions of h, and the derivative of the
denominator is always nonzero (it equals 1). The second equality in (1) is thus true a posteriori,
that is, after we find that the limit in the second line of (1) exists.

3. Newton’s method attempts to find solutions to f(x) = 0 via the successive approximations

xn+1 = xn −
f(xn)

f ′(xn)
, x0 = initial guess. (2)

Let f(x) = x2 − 2 and x0 = 2. Use the contraction mapping theorem to prove that Newton’s
method will succeed in finding

√
2, that is, limn→∞ xn =

√
2. Then use the theorem to estimate√

2 to within 10−3.

Solution. Define

φ(x) =
1

2

(
x+

2

x

)
. (3)

1Namely logb u− logb u = logb
u
v
for any u, v > 0.
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Thus xn+1 = φ(xn) for n ≥ 0, where {xn}∞n=0 are defined as in (2) and x0 = 2. If we can show
φ is a contraction mapping on [

√
2, 2] with constant K, then

|xn − x∗| ≤
Kn

1−K
|x1 − x0| (4)

where φ(x∗) = x∗, and in particular, limxn = x∗. It is easy to check from (3) that φ(x∗) = x∗
implies x∗ = ±

√
2; since xn ≥ 0 for all n we can conclude x∗ =

√
2.

Thus, it only remains to show φ is a contraction mapping on [
√

2, 2] and to use (4) to
estimate

√
2 to within 10−3. Note that φ′(x) = 1/2− 1/x2, so 0 ≤ φ′(x) ≤ 1/4 for x ∈ [

√
2, 2].

In particular φ is increasing, so

φ([
√

2, 2]) = [φ(
√

2), φ(2)] = [
√

2, 3/2] ⊂ [
√

2, 2].

Thus, φ is a contraction mapping with constant K = 1/4. So,

|xn −
√

2| ≤ 2

3

(
1

4

)n

. (5)

The right hand side of (5) is less than 10−3 when n = 5. We compute

x5 = 1.414213562373095...

In fact, x5 is within 10−15 of
√

2! (So the estimate in (5) is not necessarily optimal...)

4. Let f : [a, b] → [a, b] be surjective and differentiable, such that 0 < m ≤ f ′(x) < M for all
x ∈ [a, b]. Let y∗ ∈ [a, b] and define φ : [a, b]→ R by

φ(x) = x− f(x)− y∗
M

. (6)

Prove that φ is a contraction mapping on [a, b]. If x0 ∈ [a, b] and xn+1 = φ(xn) for n ≥ 0, what
can be said about x∗ ≡ limn→∞ xn?

Solution. Note that φ′(x) = 1−f ′(x)/M , so 0 ≤ φ′(x) ≤ 1−m/M for all x ∈ [a, b]. In particular
φ is increasing. Observe that f is also increasing, and so since f is surjective, we must have
f(a) = a and f(b) = b. Now φ([a, b]) = [φ(a), φ(b)] where

φ(a) = a− a− y∗
M

≥ a

φ(b) = b− b− y∗
M

≤ b,

which shows φ([a, b]) ⊂ [a, b]. Thus φ is a contraction mapping (with constant 1 −m/M). So
φ(x∗) = x∗, which from (6) implies f(x∗) = y∗.

5. A function f : (a, b)→ R is called uniformly differentiable if it is differentiable and for each
ε > 0, there is δ > 0 such that x, y ∈ (a, b) and 0 < |x− y| < δ imply∣∣∣∣f(y)− f(x)

y − x
− f ′(x)

∣∣∣∣ < ε.
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Prove that if f is uniformly differentiable, then f ′ is uniformly continuous. Is the converse true?
Prove it, or provide a counterexample.

Solution. Suppose f is uniformly differentiable. Let ε > 0. Pick δ > 0 such that x, y ∈ (a, b)
and 0 < |x− y| < δ imply ∣∣∣∣f(y)− f(x)

y − x
− f ′(x)

∣∣∣∣ < ε/2.

Then x, y ∈ (a, b) and 0 < |x− y| < δ imply

|f ′(x)− f ′(y)| ≤
∣∣∣∣f ′(x)− f(y)− f(x)

y − x

∣∣∣∣ +

∣∣∣∣f(x)− f(y)

x− y
− f ′(y)

∣∣∣∣ < ε/2 + ε/2 = ε.

Conversely, suppose f ′ is uniformly continuous. Let ε > 0 and pick δ > 0 such that x, y ∈ (a, b)
and |x − y| < δ imply |f ′(x) − f ′(y)| < ε. Let x, y ∈ (a, b) be such that 0 < |x − y| < δ. By
MVT there exists c between x and y such that

f ′(c) =
f(y)− f(x)

y − x
.

Since c ∈ (a, b) and 0 < |x− c| < |x− y| < δ, we have∣∣∣∣f(y)− f(x)

y − x
− f ′(x)

∣∣∣∣ =
∣∣f ′(c)− f ′(x)

∣∣ < ε

as required.
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