4603 HW10

1. Use IVT and MVT to show that $x^3 + x + 1 = 0$ has exactly one solution.

Solution. Let $f(x) = x^3 + x + 1$. Note that f(-1) = -1 < 0 and f(1) = 3 > 0 so by IVT there is a solution to $x^3 + x + 1 = 0$ between -1 and 1. Suppose there are two such solutions, say u and v, with $u \neq v$. Then there is c between u and v such that f'(c) = [f(v) - f(u)]/(v - u) = 0. But $f'(c) = 3c^2 + 1 > 0$, contradiction.

2. Define $f:(0,\infty)\to\mathbb{R}$ by $f(x)=\log_b x$. Taking for granted the fact that f' exists and is continuous, prove that f'(x)=c/x where c is a constant.

Solution. Let $x \in (0, \infty)$ and observe that

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{f\left(1 + \frac{h}{x}\right)}{h}$$

$$= \lim_{h \to 0} \frac{f'\left(1 + \frac{h}{x}\right)\frac{1}{x}}{1}$$

$$= \frac{f'(1)}{x}$$

$$(1)$$

where the first equality in (1) comes from algebraic properties of logarithms¹, the second equality comes from L'Hospital's rule and the chain rule, and the last equality comes from the assumption that f' is continuous.

L'Hospital's rule is justified here because: the numerator and denominator of

$$\frac{f\left(1+\frac{h}{x}\right)}{h}$$

are both equal to 0 when h = 0, both are differentiable functions of h, and the derivative of the denominator is always nonzero (it equals 1). The second equality in (1) is thus true a posteriori, that is, after we find that the limit in the second line of (1) exists.

3. Newton's method attempts to find solutions to f(x) = 0 via the successive approximations

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad x_0 = \text{initial guess.}$$
 (2)

Let $f(x) = x^2 - 2$ and $x_0 = 2$. Use the contraction mapping theorem to prove that Newton's method will succeed in finding $\sqrt{2}$, that is, $\lim_{n\to\infty} x_n = \sqrt{2}$. Then use the theorem to estimate $\sqrt{2}$ to within 10^{-3} .

Solution. Define

$$\phi(x) = \frac{1}{2} \left(x + \frac{2}{x} \right). \tag{3}$$

¹Namely $\log_b u - \log_b u = \log_b \frac{u}{u}$ for any u, v > 0.

Thus $x_{n+1} = \phi(x_n)$ for $n \ge 0$, where $\{x_n\}_{n=0}^{\infty}$ are defined as in (2) and $x_0 = 2$. If we can show ϕ is a contraction mapping on $[\sqrt{2}, 2]$ with constant K, then

$$|x_n - x_*| \le \frac{K^n}{1 - K} |x_1 - x_0| \tag{4}$$

where $\phi(x_*) = x_*$, and in particular, $\lim x_n = x_*$. It is easy to check from (3) that $\phi(x_*) = x_*$ implies $x_* = \pm \sqrt{2}$; since $x_n \ge 0$ for all n we can conclude $x_* = \sqrt{2}$.

Thus, it only remains to show ϕ is a contraction mapping on $[\sqrt{2}, 2]$ and to use (4) to estimate $\sqrt{2}$ to within 10^{-3} . Note that $\phi'(x) = 1/2 - 1/x^2$, so $0 \le \phi'(x) \le 1/4$ for $x \in [\sqrt{2}, 2]$. In particular ϕ is increasing, so

$$\phi([\sqrt{2},2]) = [\phi(\sqrt{2}),\phi(2)] = [\sqrt{2},3/2] \subset [\sqrt{2},2].$$

Thus, ϕ is a contraction mapping with constant K = 1/4. So,

$$|x_n - \sqrt{2}| \le \frac{2}{3} \left(\frac{1}{4}\right)^n. \tag{5}$$

The right hand side of (5) is less than 10^{-3} when n = 5. We compute

$$x_5 = 1.414213562373095...$$

In fact, x_5 is within 10^{-15} of $\sqrt{2}$! (So the estimate in (5) is not necessarily optimal...)

4. Let $f:[a,b] \to [a,b]$ be surjective and differentiable, such that $0 < m \le f'(x) < M$ for all $x \in [a,b]$. Let $y_* \in [a,b]$ and define $\phi:[a,b] \to \mathbb{R}$ by

$$\phi(x) = x - \frac{f(x) - y_*}{M}.\tag{6}$$

Prove that ϕ is a contraction mapping on [a, b]. If $x_0 \in [a, b]$ and $x_{n+1} = \phi(x_n)$ for $n \ge 0$, what can be said about $x_* \equiv \lim_{n \to \infty} x_n$?

Solution. Note that $\phi'(x) = 1 - f'(x)/M$, so $0 \le \phi'(x) \le 1 - m/M$ for all $x \in [a, b]$. In particular ϕ is increasing. Observe that f is also increasing, and so since f is surjective, we must have f(a) = a and f(b) = b. Now $\phi([a, b]) = [\phi(a), \phi(b)]$ where

$$\phi(a) = a - \frac{a - y_*}{M} \ge a$$
$$\phi(b) = b - \frac{b - y_*}{M} \le b,$$

which shows $\phi([a,b]) \subset [a,b]$. Thus ϕ is a contraction mapping (with constant 1-m/M). So $\phi(x_*) = x_*$, which from (6) implies $f(x_*) = y_*$.

5. A function $f:(a,b)\to\mathbb{R}$ is called uniformly differentiable if it is differentiable and for each $\epsilon>0$, there is $\delta>0$ such that $x,y\in(a,b)$ and $0<|x-y|<\delta$ imply

$$\left| \frac{f(y) - f(x)}{y - x} - f'(x) \right| < \epsilon.$$

Prove that if f is uniformly differentiable, then f' is uniformly continuous. Is the converse true? Prove it, or provide a counterexample.

Solution. Suppose f is uniformly differentiable. Let $\epsilon > 0$. Pick $\delta > 0$ such that $x, y \in (a, b)$ and $0 < |x - y| < \delta$ imply

$$\left| \frac{f(y) - f(x)}{y - x} - f'(x) \right| < \epsilon/2.$$

Then $x, y \in (a, b)$ and $0 < |x - y| < \delta$ imply

$$|f'(x) - f'(y)| \le \left| f'(x) - \frac{f(y) - f(x)}{y - x} \right| + \left| \frac{f(x) - f(y)}{x - y} - f'(y) \right| < \epsilon/2 + \epsilon/2 = \epsilon.$$

Conversely, suppose f' is uniformly continuous. Let $\epsilon > 0$ and pick $\delta > 0$ such that $x, y \in (a, b)$ and $|x - y| < \delta$ imply $|f'(x) - f'(y)| < \epsilon$. Let $x, y \in (a, b)$ be such that $0 < |x - y| < \delta$. By MVT there exists c between x and y such that

$$f'(c) = \frac{f(y) - f(x)}{y - x}.$$

Since $c \in (a, b)$ and $0 < |x - c| < |x - y| < \delta$, we have

$$\left| \frac{f(y) - f(x)}{y - x} - f'(x) \right| = \left| f'(c) - f'(x) \right| < \epsilon$$

as required.