4603 HW11

1. Suppose that $f : \mathbb{R} \to \mathbb{R}$ satisfies f(0) = f'(0) = 0 and f''(x) - f(x) = 0 for all $x \in \mathbb{R}$. Use Taylor's theorem to show that f(x) = 0 for all $x \in \mathbb{R}$.

Solution. Note that $f''' = (f')'' = f', f'''' = (f'')'' = f'', \dots$ and in general

$$f^{(n)} = \begin{cases} f, & n \text{ even} \\ f', & n \text{ odd} \end{cases}$$

Since f(0) = f'(0) = 0, we conclude that every Taylor polynomial for f centered at a = 0 is the zero function. Let x > 0. For every n,

$$f(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$$

for some $c \in (0, x)$. Since $f^{(n+1)}$ is differentiable, it is continuous, so on the compact set [0, x] it is bounded, say $|f^{(n+1)}| \leq M$. Thus,

$$|f(x)| \le \frac{Mx^{n+1}}{(n+1)!} \tag{1}$$

The limit as $n \to \infty$ of the RHS of (1) is 0. Thus, f(x) = 0. The arguments for x < 0 are identical.

2. Define $f : [0,1] \to \mathbb{R}$ by f(x) = 0 if $x \in \mathbb{Q}$ and f(x) = 1 if $x \notin \mathbb{Q}$. Prove that f is not Riemann integrable.

Solution. Let $P = \{x_0, \ldots, x_n\}$ be any partition of [0, 1]. Note that each interval $[x_{i-1}, x_i]$ contains both rational and irrational points, so $m_i = 0$ and $M_i = 1$ for $i = 1, \ldots, n$. Thus, U(P, f) - L(P, f) = 1. As P was arbitrary, f is not Riemann integrable.

3. Let $f : [a,b] \to \mathbb{R}$ be a continuous, nonnegative function. Suppose f(c) > 0 for some $c \in [a,b]$. Prove that then $\int_a^b f \, dx > 0$.

Solution. Suppose for simplicity that $c \in (a, b)$. Using continuity of f, pick $0 < \delta < \min\{|c-a|, |c-b|\}$ such that $x \in (c-\delta, c+\delta)$ implies f(x) > f(c)/2. Let $P = \{a, c-\delta, c+\delta, b\}$. Since f is nonnegative, $L(P, f) \ge (2\delta)f(c)/2 = \delta f(c) > 0$. Since $L(P, f) \le \int_a^b f \, dx$ we are done. The cases where c = a or c = b are similar.