
4603 HW2

1. Let S ⊂ R be nonempty. Prove the following statements:
(i) S is countable if and only if there exists an injective function f : S → N.
(ii) S is countable if and only if there exists a sequence {an}∞n=1 of real numbers such that

S = {an : n ∈ N}.

Solution. (i) Assume S is countable, that is, S is either finite or countably infinite. First
suppose S is finite, and write S = {s1, . . . , sn}. Then f : S → N, f(sj) = j is an injective
function. Now suppose S is countably infinite. This means there exists a bijective function
f : S → N, which of course is also an injection. Conversely, assume there exists an injective
function S → N. Then f : S → f(S) is a bijective function, meaning |S| = |f(S)|. If f(S) is
finite then so is S and we are done. So assume f(S) is infinite. Then by a theorem in class,
f(S) is countably infinite. (Recall we proved that infinite sets of natural numbers are countably
infinite.) So S is countably infinite and we are done.

(ii) Assume S is countable. If S is finite, write S = {s1, . . . , sn}, and define a1 = s1, . . . , an =
sn and am = s1 for m > n. Then S = {an : n ∈ N} by construction. Now assume S is countably
infinite. Then there is a bijection f : S → N. Define an = f−1(n); then S = {an : n ∈ N}
as desired. Conversely, assume there exists a sequence {an}∞n=1 such that S = {an : n ∈ N}.
Define f : S → N by f(x) = min{n ∈ N : an = x}. If x 6= y ∈ S then {n ∈ N : an = x} is
disjoint from {n ∈ N : an = y}, so that f(x) 6= f(y). This shows f is injective.

2. Construct a bijective function f : 2N → S, where S is the set of all sequences of 0’s and 1’s.
Noting that each real number between 0 and 1 has a base two decimal expansion, what do you
expect to be true about the cardinality of the set (0, 1) ⊂ R?

Solution. Define f : 2N → S by f(A) = {an}∞n=1 where an = 1 if n ∈ A, and an = 0 otherwise.
If A 6= B then either there exists n ∈ A\B or there exists n ∈ B\A. In both cases the nth term
of the sequences f(A) and f(B) are different, so that f(A) 6= f(B). So f is injective. Now given
a sequence {an}∞n=1 ∈ S, let A = {n ∈ N : an = 1}. Then by construction f(A) = {an}∞n=1.
This shows f is surjective. We conlude f is bijective.

Noticing that any real number in (0, 1) has a base two expansion (i.e. a representation as
a sequence of 0’s and 1’s after a decimal point), one might expect that |(0, 1)| = |2N|. This is
indeed true, though one must be careful because a given real number may have two different
base two expansions.

3. Show that
√

3 /∈ Q. Then show that z = sup{x ∈ R : x2 < 3} exists and satisfies z2 = 3.
Conclude that

√
3 ∈ R \Q.

Solution. Suppose that
√

3 = m/n with m,n ∈ N having no prime factors in common. Then
3 = m2/n2 so 3n2 = m2, which shows m2 is divisible by 3. By Euclid’s lemma m is also divisible
by 3. So m = 3k for some k ∈ N. Now 3n2 = (3k)2 so n2 = 3k2. Thus n is also divisible by 3,
contradiction. So

√
3 /∈ Q.
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Now {x ∈ R : x2 < 3} is nonempty since it contains 0, and is bounded above by 3 (for
example). So z = sup{x ∈ R : x2 < 3} exists. Suppose z 6= 3; then either z < 3 or z > 3.
Assume z > 3, and pick δ > 0 such that δ < (z2 − 3)/(2z). Then (z − δ)2 > 3, which implies
z − δ is an upper bound of {x ∈ R : x2 < 3}, contrary to z being the least upper bound. Now
assume z < 3, and pick δ ∈ (0, 1) such that δ < (3 − z2)/(2z + 1). Then (z + δ)2 < 3, which
means z + δ ∈ {x ∈ R : x2 < 3}, contrary to z being an upper bound of {x ∈ R : x2 < 3}.

Using the least upper bound axiom of R, we can conclude that
√

3 ∈ R. So
√

3 ∈ R \Q.

4. Let S ⊂ R be nonempty. A real number y is a lower bound of S if x ≥ y for all x ∈ S,
and S is said to be bounded below if such a lower bound exists. Furthermore y is said to be the
greatest lower bound of S if y ≥ z for every lower bound z of S. In this case we write y = inf S
(inf is short for “infimum”).

Use the least upper bound property of R to prove that every nonempty subset of R which
is bounded below has a greatest lower bound.

Let S ⊂ R be nonempty and bounded below, say S contains y and is bounded below by w.
Define −S = {−x : x ∈ S}. Then −S is nonempty since it contains −y, and −S is bounded
above by −w: if −x ∈ −S then x ∈ S so that x ≥ w and then −x ≤ −w. Thus, −z ≡ sup(−S)
exists. We claim z = inf(S). Let x ∈ S. Then −x ∈ −S so −x ≤ −z, which implies x ≥ z. So
z is a lower bound of S. Now suppose v is another lower bound of S. The arguments above
show that then −v is an upper bound of −S, and so −v ≥ z. Now v ≤ z which shows z is the
greatest lower bound of S, i.e. z = inf(S).

5. Define the sequence {an}∞n=1 by an = 0 if n is a power of 10, and an = 1 otherwise. Prove
that {an}∞n=1 does not converge to 1. How is this different from proving that {an}∞n=1 does not
converge?

Solution. Let ε = 1/2 and let N be arbitrary. Let n be a power of 10 such that n ≥ N . Now
n ≥ N yet |an − 1| = |0− 1| ≥ ε. This shows {an}∞n=1 does not converge to 1.

To show that {an}∞n=1 does not converge, one has to show it does not converge to L, for
any L.
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