4603 HW4

1. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers. Prove that if x is an accumulation point of $\{a_n : n \in \mathbb{N}\}$, then $\{a_n\}_{n=1}^{\infty}$ has a subsequence converging to x.

2. Define $f : \mathbb{R} \to \mathbb{R}$ by f(x) = 0 if x < 0 and f(x) = 1 if $x \ge 0$. Show that f has no limit at 0 in the following ways:

- (i) By using the $\epsilon \delta$ definition of limits of functions;
- (ii) By using the sequential definition of limits of functions.
- 3. Prove that $\lim_{x\to a} \sqrt{x} = \sqrt{a}$ for any a > 0.