$4603 \ \mathrm{HW5}$

1. Define $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} x^2, & x \neq 2\\ 11, & x = 2 \end{cases}.$$

Prove that $\lim_{x\to 2} f(x) = 4$.

2. Let $f, g: D \to \mathbb{R}$, let a be an accumulation point of D, and assume $\lim_{x\to a} f(x) = L$, $\lim_{x\to a} g(x) = M$. Prove that then $\lim_{x\to a} (fg)(x) = LM$.

3. Define $f : \mathbb{R} \to \mathbb{R}$ by f(x) = 1 if $x \in \mathbb{Q}$ and f(x) = 0 if $x \notin \mathbb{Q}$. Let a be any real number. Show that f does not have a limit at a.

4. Give an example of an increasing function $f:[a,b] \to \mathbb{R}$ such that the set

 $S = \{x \in [a, b] : f \text{ does not have a limit at } x\}$

is countably infinite.

5. Let $f:[a,b] \to \mathbb{R}$ and assume f has a limit at $c \in (a,b)$. Define

$$U(x) = \inf\{f(y) : y > x\}$$

$$L(x) = \sup\{f(y) : y < x\}.$$

Must it be true that U(c) = L(c)? Prove it, or provide a counterexample.